Share:
Share this content in WeChat
X
Review
Application progress of diffusion weighted magnetic resonance imaging in epilepsy
ZHOU Qian  ZHANG Guanghao  WU Changzhe  HUO Xiaolin  ZHANG Cheng 

Cite this article as: Zhou Q, Zhang GH, Wu CZ, et al. Application progress of diffusion weighted magnetic resonance imaging in epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(8): 104-108. DOI:10.12015/issn.1674-8034.2022.08.023.


[Abstract] Epilepsy is a common chronic neurological disease with transient brain dysfunction caused by sudden abnormal discharge of brain neurons. Its main clinical characteristics are recurrent seizures and motor dysfunction, which seriously reduce the quality of life of patients. Therefore, it is necessary to diagnose and treat it in time as soon as possible. Diffusion weighted imaging (DWI) is a non-invasive imaging technology, which can use the diffusion information of water molecules to reflect the microstructure changes of brain tissue in patients with epilepsy. DWI technology has been continuously developed since it was proposed. Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI) and diffusion spectrum imaging (DSI) have been widely used in the diagnosis and treatment of epilepsy. This paper briefly introduces several common DWI related technologies, and summarizes their application progress in the localization of epileptic foci, the diagnosis of epilepsy, and the network research of epilepsy.
[Keywords] epilepsy;diffusion weighted imaging;diffusion tensor imaging;diffusion kurtosis imaging;diffusion spectrum imaging

ZHOU Qian1, 2   ZHANG Guanghao1, 2   WU Changzhe1, 2   HUO Xiaolin1, 2   ZHANG Cheng1, 2*  

1 Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China

2 School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, China

Zhang C, E-mail: zhangchengcc@mail.iee.ac.cn

Conflicts of interest   None.

Received  2022-04-17
Accepted  2022-07-26
DOI: 10.12015/issn.1674-8034.2022.08.023
Cite this article as: Zhou Q, Zhang GH, Wu CZ, et al. Application progress of diffusion weighted magnetic resonance imaging in epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(8): 104-108.DOI:10.12015/issn.1674-8034.2022.08.023

[1]
Ettore Beghi. The Epidemiology of Epilepsy[J]. Neuroepidemiology, 2020, 54(2): 185-191. DOI: 10.1159/00050381.
[2]
Yang WM, Sun D, Liu ZS. Application of multimodal magnetic resonance imaging in children with epilepsy[J]. J Epilepsy, 2018, 4(5): 406-410. DOI: 10.7507/2096-0247.20180067.
[3]
Apj A, Jtcd A, Clpl B, et al. Granule cell dispersion is associated with hippocampal neuronal cell loss, initial precipitating injury, and other clinical features in mesial temporal lobe epilepsy and hippocampal sclerosis[J]. Seizure, 2021, 90: 60-66. DOI: 10.1016/j.seizure.2021.05.024.
[4]
Meng X, Wang QG, Shao FM, et al. MR diffusion weighted imaging in differential diagnosis of benign and malignant space occupying lesions of the cerebellum[J]. J Prac Radiol, 2021, 37(4): 535-538. DOI: 10.3969/j.issn.1002-1671.2021.04.005.
[5]
Han T, Zhang J, Liu XW, et al. Differentiating atypical meningioma from anaplastic meningioma using diffusion weighted imaging[J]. Clinical Imaging, 2022, 82: 237-243. DOI: 10.1016/J.CLINIMAG.2021.12.004.
[6]
Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient[J]. J Chem Phys, 1965, 42(1): 288-292. DOI: 10.1063/1.1695690.
[7]
Zhang Q, Zhang YT, Zhang J, et al. Preliminary study of MR-diffusion Weighted Imaging in Temporal Lobe Epilepsy[J]. J Clin Radiol, 2008(5): 581-584. DOI: 10.3969/j.issn.1001-9324.2008.05.003.
[8]
Basser PJ, Mattiello J, Lebihan D. Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo-ScienceDirect[J]. J Magn Reson, 1994, 103(3): 247-254. DOI: 10.1006/jmrb.1994.1037.
[9]
Hecke WV, Emsell L, Sunaert S. Diffusion Tensor Imaging: A Practical Handbook[M/OL]. New York: Springer, 2015 [2022-04-17]. https://link.springer.com/book/10.1007/978-1-4939-3118-7. DOI: 10.1007/978-1-4939-3118-7.
[10]
Gu HF, Dai H. Diagnostic value of texture analysis based on diffusion tensor imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 1-6. DOI: 10.12015/issn.1674-8034.2021.11.001.
[11]
Bigham B, Zamanpour SA, Zemorshidi F, et al. Identifi-cation of Superficial White Matter Abnormalities in Alzheimer's Disease and Mild Cognitive Impairment Using Diffusion Tensor Imaging[J]. Journal of Alzheimer's Disease Reports, 2020, 4(1): 1-11. DOI: 10.3233/ADR-190149.
[12]
Sadek MN, Ismail ES, Kamel AI, et al. Diffusion Tensor Imaging of Corpus Callosum in Adolescent Females with Borderline Personality Disorder[J]. J Psychiatr Res, 2021, 138(2): 272-279. DOI: 10.1016/j.jpsychires.2021.04.010.
[13]
Wang Z, Wang H, Mwansisya TE, et al. The integrity of the white matter in first-episode schizophrenia patients with auditory verbal hallucinations: an atlas-based DTI analysis[J/OL]. Psychiatry Research: Neuroimaging, 2021(2) [2022-04-17]. https://linkinghub.elsevier.com/retrieve/pii/S0925492721000809. DOI: 10.1016/j.pscychresns.2021.111328.
[14]
Omar MKM, Allah EKHA, Maghrabi MG, et al. The value of quantitative diffusion tensor imaging indices of spinal cord disorders[J/OL]. Egyptian Journal of Radiology and Nuclear Medicine, 2021, 52 [2022-04-17]. https://ejrnm.springeropen.com/articles/10.1186/s43055-021-00596-w. DOI: 10.1186/s43055-021-00596-W.
[15]
Feng L, Fu LY, Xiao H, et al,. Evaluation of Changes in Cerebral White Matter Diffusion Tensor in Young Adults with Medial Temporal Lobe Epilepsy Based on TBSS Method[J]. China Medical Devices, 2021, 36(7): 22-28. DOI: 10.3969/j.issn.1674-1633.2021.07.004.
[16]
Yang CL, Zhang YN, Li ZM, et al. Ren JC. White Matter Integrity in Temporal Lobe Epilepsy Patients Based on Diffusion Tensor Imaging[J]. Journal of Beijing University of Technology, 2022, 48(1): 85-94. DOI: 10.11936/bjutxb2020110027.
[17]
Ezequiel, Gleichgerrcht, Madison, et al. Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy[J]. Epilepsia, 2015, 56(11): 1660-1668. DOI: 10.1111/epi.13133.
[18]
Park KM, Lee BI, Shin KJ, et al. Pivotal Role of Subcortical Structures as a Network Hub in Focal Epilepsy: Evidence from Graph Theoretical Analysis Based on Diffusion-Tensor Imaging[J]. J Clin Neurol, 2019, 15(1): 68-76. DOI: 10.3988/jcn.2019.15.1.68.
[19]
Bonilha L, Nesland T, Martz GU, et al. Medial temporal lobe epilepsy is associated with neuronal fiber loss and paradoxical increase in structural connectivity of limbic structures[J]. J Neurol Neurosur PS, 2012, 83(9): 903-909. DOI: 10.1136/jnnp2012302476.
[20]
Zhang YM, Qian RB, Fu XM, et al. DTI study of default mode network structural connection in patients with refractory epilepsy[J]. J Clin Neurol, 2019, 32(2): 81-85. DOI: 10.3969/j.issn.1004-1648.2019.02.002.
[21]
Amarreh I, Meyerand ME, Stafstrom C, et al. Individual classification of children with epilepsy using support vector machine with multiple indices of diffusion tensor imaging[J]. NeuroImage: Clinical, 2014, 4: 757-764. DOI: 10.1016/j.nicl.2014.02.006.
[22]
Dong AL, Lee H, Kim BJ, et al. Identification of focal epilepsy by diffusion tensor imaging using machine learning[J]. Acta Neurol Scand, 2021, 143(6): 637-645. DOI: 10.1111/ane.13407.
[23]
Liao W, Zhang ZQ, Pan ZY, et al. Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI[J]. Hum Brain Mapp, 2011, 32(6): 883-895. DOI: 10.1002/hbm.21076.
[24]
Liu BJ, Zhao LL, Liu HF. Application value of video electroencephalography combined with MRI-DTI in the localization of negative epilepsy[J]. Chin J CT & MRI, 2020, 18(1): 146-148. DOI: 10.3969/j.issn.1672-5131.2020.01.046.
[25]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.2050.
[26]
Liang X, Shi WW, Tan Y, et al. Diffusion kurtosis imaging: research advances in brain tumors[J]. Chin J Magn Reson Imaging, 2020, 11(3): 221-223. DOI: 10.12015/issn.1674-8034.2020.03.013.
[27]
Huang J, Xu J, Kang L, et al. Identifying Epilepsy Based on Deep Learning Using DKI Images[J/OL]. Front Hum Neurosci, 2020, 14 [2022-04-17]. https://www.frontiersin.org/articles/10.3389/fnhum.2020.590815/full. DOI: 10.3389/fnhum.2020.590815.
[28]
Glenn GR, Jensen JH, Helpern JA, et al. Epilepsy-related cytoarchitectonic abnormalities along white matter pathways[J]. J Neurol Neurosur PS, 2016, 87(9): 930-936. DOI: 10.1136/jnnp-2015-312980.
[29]
Bonilha L, Lee CY, Jensen JH, et al. Altered Micro-structure in Temporal Lobe Epilepsy:A Diffusional Kurtosis Imaging Study[J]. Ajnr Am J Neuroradiol, 2015, 36(4): 719. DOI: 10.3174/ajnr.A4185.
[30]
Li QL, Yang LG, Wang RR, et al. Research progress of diffusion kurtosis imaging in central nervous system diseases[J]. Journal of Molecular Imaging, 2020, 43(3): 399-403. DOI: 10.12122/j.issn.1674-4500.2020.03.07.
[31]
Zhao X, Zhang C, Zhang B, et al. The Value of Diffusion Kurtosis Imaging in Detecting Delayed Brain Development of Premature Infants[J/OL]. Front Neurol, 2021, 12 [2022-04-17]. https://www.frontiersin.org/articles/10.3389/fneur.2021.789254/full. DOI: 10.3389/fneur.2021.789254.
[32]
Pogosbekian EL, Pronin IN, Zakharova NE, et al. Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading[J]. Neuroradiology, 2021, 63(8): 1241-1251. DOI: 10.1007/s00234-020-02613-7.
[33]
Goghari VM, Kusi M, Shakeel MK, et al. Diffusion kurtosis imaging of white matter in bipolar disorder[J/OL]. Psychiatry Research: Neuroimaging, 2021, 317 [2022-04-17]. https://linkinghub.elsevier.com/retrieve/pii/S0925492721000937. DOI: 10.1016/j.pscychresns.2021.111341.
[34]
Bartoňová M, Bartoň M, Íha P, et al. The benefit of the diffusion kurtosis imaging in presurgical evaluation in patients with focal MR-negative epilepsy[J/OL]. Scientific Reports, 2021, 11(1) [2022-04-17]. https://www.nature.com/articles/s41598-021-92804-w. DOI: 10.1038/s41598-021-92804-W.
[35]
Mu S, Lu Y, Zeng YZ, et al. Study of white matter changes in idiopathic generalized epilepsy using diffusion kurtosis imaging[J]. Radiol Pract, 2021, 36(3): 334-339. DOI: 10.13609/j.cnki.1000-0313.2021.03.009.
[36]
Muhlhofer W, Tan YL, Mueller SG, et al. MRI-negative temporal lobe epilepsy—What do we know?[J]. Epilepsia, 2017, 58(5): 727-742. DOI: 10.1111/epi.13699.
[37]
Gong XR, Bi GL, Wang B, et al. Diagnosis of Diffusion Kurtosis Imaging in Evaluating Conventional MRI Negative Temporal Lobe Epilepsy[J]. Chin J Med Imaging, 2019, 27(2): 112-114. DOI: 10.3969/j.issn.1005-5185.2019.02.007.
[38]
Gaizo JD, Mofrad N, Jensen JH, et al. Using machine learning to classify temporal lobe epilepsy based on diffusion MRI[J/OL]. Brain and Behavior, 2017, 7(4) [2022-04-17]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.801. DOI: 10.1002/brb3.801.
[39]
Kang L, Chen J, Huang J, et al. Identifying epilepsy based on machine-learning technique with diffusion kurtosis tensor[J]. CNS Neuroscience & Therapeutics, 2021, 28(3): 354-363. DOI: 10.1111/cns.13773.
[40]
Liu GH, Lyu GW, Yang N, et al. Abnormalities of diffusional kurtosis imaging and regional homogeneity in idiopathic generalized epilepsy with generalized tonic-clonic seizures[J]. Experimental and Therapeutic Medicine, 2019, 17(1): 603-612. DOI: 10.3892/etm.2018.7018.
[41]
Steven AJ, Zhuo J, Melhem ER. Diffusion Kurtosis Imaging: An Emerging Technique for Evaluating the Micro-structural Environment of the Brain[J]. Am J Roentgenol, 2014, 202(1): W26-W33. DOI: 10.2214/ajr.13.11365.
[42]
Wedeen VJ, Hagmann P, Tseng W, et al. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging[J]. Magn Reson Med, 2005, 54(6): 1377-1386. DOI: 10.1002/mrm.20642.
[43]
Schmeiser B, Zentner J, Prinz M, et al. Extent of mossy fiber sprouting in patients with mesiotemporal lobe epilepsy correlates with neuronal cell loss and granule cell dispersion[J]. Epilepsy Res, 2017, 129: 51-58. DOI: 10.1016/j.eplepsyres.2016.11.011.
[44]
Kuo LW, Lee CY, Chen JH, et al. Mossy fiber sprouting in pilocarpine-induced status epilepticus rat hippocampus: a correlative study of diffusion spectrum imaging and histology[J]. Neuroimage, 2008, 41(3): 789-800. DOI: 10.1016/j.neuroimage.2008.03.013.
[45]
Lemkaddem A, Daducciae A, Kunz A, et al. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging[J]. Neuro-Image: Clinical, 2014, 5: 349-358. DOI: 10.1016/j.nicl.2014.07.013.
[46]
Shuichi U, Kiyohito T, Koichi B, et al. Neural connection between bilateral basal temporal regions: cortico-cortical evoked potential analysis in patients with temporal lobe epilepsy[J]. Neurosurgery, 2009, 64(5): 847-855. DOI: 10.1227/01.NEU.0000344001.26669.92.
[47]
Wei PH, Mao ZQ, Cong F, et al. Connection between bilateral temporal regions: tractography using human con-nectome data and diffusion spectrum imaging[J]. J Clin Neuro Sci, 2017, 39: 103-108. DOI: 10.1016/j.jocn.2017.01.012.
[48]
Romascano D, Meskaldji DE, Bonnier G, et al. Multi-contrast connectometry: A new tool to assess cerebellum alterations in early relapsing-remitting multiple sclerosis[J]. Hum Brain Mapp, 2015, 36(4): 1609-1619. DOI: 10.1002/hbm.22698.
[49]
Tobisch A, Schultz T, Stirnberg R, et al. Comparison of basis functions and q-space sampling schemes for robust compressed sensing reconstruction accelerating diffusion spectrum imaging[J/OL]. NMR in Biomedicine, 2019, 32(3) [2022-04-17]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4055. DOI: 10.1002/nbm.4055.
[50]
Va Rela-Mattatall GE, Koch A, Stirnberg R, et al. Com-parison of q-Space Reconstruction Methods for Under-sampled Diffusion Spectrum Imaging Data[J]. Magn Reson Med Sci, 2019, 19(2): 108-118. DOI: 10.2463/mrms.mp.2019-0015.
[51]
Shah P, Ashourvan A, Mikhail F, et al. Characterizing the role of the structural connectome in seizure dynamics[J]. Brain, 2019, 142(7): 1955-1972. DOI: 10.1093/brain/awz125.
[52]
Yang JY, Beare R, Seal ML, et a1. A systematic evaluation of intraoperative white matter tract shift in pediatric epilepsy surgery using high-field MRI and probabilistic high angular resolution diffusion imaging tractography[J]. J Neurosurg Pediatr, 2017, 19(5): 592-605. DOI: 10.3171/2016.11.PEDS16312.
[53]
Winston GP, Vos SB, Caldairou B, et al. Microstructural Imaging in Temporal Lobe Epilepsy: Diffusion Imaging Changes Relate to Reduced Neurite Density[J/OL]. NeuroImage: Clinical, 2020, 26 [2022-04-17]. https://linkinghub.elsevier.com/retrieve/pii/S2213158220300681. DOI: 10.1016/j.nicl.2020.102231.
[54]
Sone D, Sato N, Ota M, et al. Abnormal neurite density and orientation dispersion in unilateral temporal lobe epilepsy detected by advanced diffusion imaging[J]. NeuroImage: Clinical, 2018, 20: 772-782. DOI: 10.1016/j.nicl.2018.09.017.
[55]
Karin T, Sjoer BV, Lorenzo C, et al. Decoupling of functional and structural language networks in temporal lobe epilepsy[J]. Epilepsia, 2021, 62(12): 2941-2954. DOI: 10.1111/epi.17098.

PREV Research progress of magnetic resonance functional brain imaging in adolescent depression
NEXT Research progress of multimodal MRI in tension-type headache
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn