Share this content in WeChat
Research progress of magnetic resonance functional brain imaging in adolescent depression
DENG Jie  HE Jianbo  QIU Lihua 

Cite this article as: Deng J, He JB, Qiu LH. Research progress of magnetic resonance functional brain imaging in adolescent depression[J]. Chin J Magn Reson Imaging, 2022, 13(8): 101-103, 108. DOI:10.12015/issn.1674-8034.2022.08.022.

[Abstract] Due to the high incidence, recurrence and disability rats, adolescent depression has become a common concern of society and clinicians. With the development of imaging technology, functional magnetic resonance imaging (fMRI) has been widely used in the research of adult depression, but few studies on adolescent depression. In recent years, the results of fMRI, magnetic resonance spectroscopy and MR perfusion weighted imaging show that the frontal-limbic system, basal ganglia, corpus callosum, cerebellum and other regions of adolescent depression are abnormal in function, metabolism and blood perfusion. These regions are associated with emotion, memory, reward, cognition and other functions, and may be potential biomarkers of adolescent depression. This paper briefly reviews the research results and potential deficiencies of fMRI in adolescent depression in recent years, in order to provide direction for future research.
[Keywords] adolescent depression;magnetic resonance imaging;magnetic resonance spectroscopy;perfusion weighted imaging;arterial spin labeling;blood oxygenation level dependent

DENG Jie1, 2   HE Jianbo2   QIU Lihua1, 3*  

1 Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China

2 Department of Radiology, the Fourth People's Hospital of Yibin, Yibin 644000, China

3 Neurographic Big Data Research Center, Clinical Research and Translational Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin 644000, China.

Qiu LH, E-mail:

Conflicts of interest   None.

Received  2022-02-08
Accepted  2022-07-26
DOI: 10.12015/issn.1674-8034.2022.08.022
Cite this article as: Deng J, He JB, Qiu LH. Research progress of magnetic resonance functional brain imaging in adolescent depression[J]. Chin J Magn Reson Imaging, 2022, 13(8): 101-103, 108.DOI:10.12015/issn.1674-8034.2022.08.022

GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Psychiatry, 2022, 9(2): 137-150. DOI: 10.1016/s2215-0366(21)00395-3.
Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. DOI: 10.1016/s2215-0366(18)30511-x.
Qiu L, Xia M, Cheng B, et al. Abnormal dynamic functional connectivity of amygdalar subregions in untreated patients with first-episode major depressive disorder[J]. J Psychiatry Neurosci, 2018, 43(4): 262-272. DOI: 10.1503/jpn.170112.
Kebets V, Favre P, Houenou J, et al. Fronto-limbic neural variability as a transdiagnostic correlate of emotion dysregulation[J/OL]. Transl Psychiatry, 2021, 11 [2022-02-08]. DOI: 10.1038/s41398-021-01666-3.
Redlich R, Opel N, Bürger C, et al. The Limbic System in Youth Depression: Brain Structural and Functional Alterations in Adolescent In-patients with Severe Depression[J]. Neuropsychopharmacology, 2018, 43(3): 546-554. DOI: 10.1038/npp.2017.246.
Mattson W I, Hyde L W, Shaw DS, et al. Clinical neuroprediction: Amygdala reactivity predicts depressive symptoms 2 years later[J]. Soc Cogn Affect Neurosci, 2016, 11(6): 892-898. DOI: 10.1093/scan/nsw018.
O'Callaghan G, Stringaris A. Reward Processing in Adolescent Depression Across Neuroimaging Modalities[J]. Z Kinder Jugendpsychiatr Psychother, 2019, 47(6): 535-541. DOI: 10.1024/1422-4917/a000663.
Fischer AS, Ellwood-Lowe ME, Colich NL, et al. Reward-circuit biomarkers of risk and resilience in adolescent depression[J]. J Affect Disord, 2019, 246: 902-909. DOI: 10.1016/j.jad.2018.12.104.
Liu Q, Ely BA, Schwartz JJ, et al. Reward function as an outcome predictor in youth with mood and anxiety symptoms[J]. J Affect Disord, 2021, 278: 433-442. DOI: 10.1016/j.jad.2020.09.074.
Pan PM, Sato JR, Paillère Martinot ML, et al. Longitudinal Trajectory of the Link Between Ventral Striatum and Depression in Adolescence[J]. Am J Psychiatry, 2022, 179(7): 470-481. DOI: 10.1176/appi.ajp.20081180.
Rappaport BI, Kandala S, Luby JL, et al. Brain Reward System Dysfunction in Adolescence: Current, Cumulative, and Developmental Periods of Depression[J]. Am J Psychiatry, 2020, 177(8): 754-763. DOI: 10.1176/appi.ajp.2019.19030281.
Auerbach RP, Pagliaccio D, Hubbard NA, et al. Reward-Related Neural Circuitry in Depressed and Anxious Adolescents: A Human Connectome Project[J]. J Am Acad Child Adolesc Psychiatry, 2022, 61(2): 308-320. DOI: 10.1016/j.jaac.2021.04.014.
Spellman T, Liston C. Toward Circuit Mechanisms of Pathophysiology in Depression[J]. Am J Psychiatry, 2020, 177(5): 381-390. DOI: 10.1176/appi.ajp.2020.20030280.
Mao N, Che K, Chu T, et al. Aberrant Resting-State Brain Function in Adolescent Depression[J/OL]. Front Psychol, 2020, 11 [2022-02-08]. DOI: 10.3389/fpsyg.2020.01784.
Hu L, Xiao M, Ai M, et al. Disruption of resting-state functional connectivity of right posterior insula in adolescents and young adults with major depressive disorder[J]. J Affect Disord, 2019, 257: 23-30. DOI: 10.1016/j.jad.2019.06.057.
Geng H, Wu F, Kong L, et al. Disrupted Structural and Functional Connectivity in Prefrontal-Hippocampus Circuitry in First-Episode Medication-Naïve Adolescent Depression[J/OL]. PLoS One, 2016, 11(2) [2022-02-08]. DOI: 10.1371/journal.pone.0148345.
Wu F, Tu Z, Sun J, et al. Abnormal Functional and Structural Connectivity of Amygdala-Prefrontal Circuit in First-Episode Adolescent Depression: A Combined fMRI and DTI Study[J/OL]. Front Psychiatry, 2019, 10 [2022-02-08]. DOI: 10.3389/fpsyt.2019.00983.
Bendezú JJ, Thai M, Wiglesworth A, et al. Adolescent stress experience-expression-physiology correspondence: Links to depression, self-injurious thoughts and behaviors, and frontolimbic neural circuity[J]. J Affect Disord, 2022, 300: 269-279. DOI: 10.1016/j.jad.2021.12.098.
Klimes-Dougan B, Başgöze Z, Mueller B, et al. Structural and Functional Neural Correlates of Treatment Response for Interpersonal Psychotherapy for Depressed Adolescents[J/OL]. J Clin Med, 2022, 11(7) [2022-02-08]. DOI: 10.3390/jcm11071878.
Schmaal L, Hibar DP, Samann PG, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group[J]. Mol Psychiatry, 2017, 22(6): 900-909. DOI: 10.1038/mp.2016.60.
Raichle ME. The brain's default mode network[J]. Annu Rev Neurosci, 2015, 38: 433-447. DOI: 10.1146/annurev-neuro-071013-014030.
Luo L, Wu H, Xu J, et al. Abnormal large-scale resting-state functional networks in drug-free major depressive disorder[J]. Brain Imaging Behav, 2021, 15(1): 96-106. DOI: 10.1007/s11682-019-00236-y.
Kerestes R, Davey CG, Stephanou K, et al. Functional brain imaging studies of youth depression: a systematic review[J]. Neuroimage Clin, 2014, 4: 209-231. DOI: 10.1016/j.nicl.2013.11.009.
Chi S, Song M, Lee JH, et al. Prospective study on resting state functional connectivity in adolescents with major depressive disorder after antidepressant treatment[J]. J Psychiatr Res, 2021, 142: 369-375. DOI: 10.1016/j.jpsychires.2021.08.026.
Zhang S, Chen JM, Kuang L, et al. Association between abnormal default mode network activity and suicidality in depressed adolescents[J/OL]. BMC Psychiatry, 2016, 16(1) [2022-02-08]. DOI: 10.1186/s12888-016-1047-7.
Wu B, Li X, Zhou J, et al. Altered Whole-Brain Functional Networks in Drug-Naïve, First-Episode Adolescents With Major Depression Disorder[J]. J Magn Reson Imaging, 2020, 52(6): 1790-1798. DOI: 10.1002/jmri.27270.
Cai Y, Elsayed NM, Barch DM. Contributions from resting state functional connectivity and familial risk to early adolescent-onset MDD: Results from the Adolescent Brain Cognitive Development study[J]. J Affect Disord, 2021, 287: 229-239. DOI: 10.1016/j.jad.2021.03.031.
Pannekoek JN, van der Werff SJ, Meens PH, et al. Aberrant resting-state functional connectivity in limbic and salience networks in treatment--naïve clinically depressed adolescents[J]. J Child Psychol Psychiatry, 2014, 55(12): 1317-1327. DOI: 10.1111/jcpp.12266.
Riley CA, Renshaw PF. Brain choline in major depression: A review of the literature[J]. Psychiatry Res Neuroimaging, 2018, 271: 142-153. DOI: 10.1016/j.pscychresns.2017.11.009.
Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments[J]. Neuron, 2019, 102(1): 75-90. DOI: 10.1016/j.neuron.2019.03.013.
Olvera RL, Caetano SC, Stanley JA, et al. Reduced medial prefrontal N-acetyl-aspartate levels in pediatric major depressive disorder: a multi-voxel in vivo(1)H spectroscopy study[J]. Psychiatry Res, 2010, 184(2): 71-76. DOI: 10.1016/j.pscychresns.2010.07.008.
Lefebvre D, Langevin LM, Jaworska N, et al. A pilot study of hippocampal N-acetyl-aspartate in youth with treatment resistant major depression[J]. J Affect Disord, 2017, 207: 110-113. DOI: 10.1016/j.jad.2016.05.077.
Mao N, Fang J, Xie H, et al. Correlation between neurochemical metabolism and memory function in adolescent patients with depression: A multi-voxel ¹H magnetic resonance spectroscopy study[J]. Psychiatry Clin Neurosci, 2016, 70(4): 167-174. DOI: 10.1111/pcn.12372.
Kusumakar V, MacMaster FP, Gates L, et al. Left medial temporal cytosolic choline in early onset depression[J]. Can J Psychiatry, 2001, 46(10): 959-964. DOI: 10.1177/070674370104601009.
Mirza Y, Tang J, Russell A, et al. Reduced anterior cingulate cortex glutamatergic concentrations in childhood major depression[J]. J Am Acad Child Adolesc Psychiatry, 2004, 43(3): 341-348. DOI: 10.1097/00004583-200403000-00017.
Gabbay V, Bradley KA, Mao X, et al. Anterior cingulate cortex γ-aminobutyric acid deficits in youth with depression[J/OL]. Transl Psychiatry, 2017, 7(8) [2022-02-05]. DOI: 10.1038/tp.2017.187.
Wieman ST, Arditte HallK A, MacDonald HZ, et al. Relationships Among Sleep Disturbance, Reward System Functioning, Anhedonia, and Depressive Symptoms[J]. Behav Ther, 2022, 53(1): 105-118. DOI: 10.1016/j.beth.2021.06.006.
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 110 [2022-02-08]. DOI: 10.1016/j.pnpbp.2021.110289.
Bradley KA, Alonso CM, Mehra LM, et al. Elevated striatal γ-aminobutyric acid in youth with major depressive disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 86: 203-210. DOI: 10.1016/j.pnpbp.2018.06.004.
Ely BA, Nguyen TNB, Tobe RH, et al. Multimodal Investigations of Reward Circuitry and Anhedonia in Adolescent Depression[J]. Front Psychiatry, 2021, 12 [2022-02-08]. DOI: 10.3389/fpsyt.2021.678709.
Freed RD, Hollenhorst CN, Weiduschat N, et al. A pilot study of cortical glutathione in youth with depression[J]. Psychiatry Res Neuroimaging, 2017, 270: 54-60. DOI: 10.1016/j.pscychresns.2017.10.001.
Lv S, Zhong S, Zhang S, et al. Correlations between facial emotion processing and biochemical abnormalities in untreated adolescent patients with major depressive disorder: A proton magnetic resonance spectroscopy study[J]. J Affect Disord, 2021, 296: 408-417. DOI: 10.1016/j.jad.2021.08.129.
Chithiramohan T, Parekh JN, Kronenberg G, et al. Investigating the association between depression and cerebral haemodynamics-A systematic review and meta-analysis[J]. J Affect Disord, 2022, 299: 144-158. DOI: 10.1016/j.jad.2021.11.037.
Bonte FJ, Trivedi MH, Devous MD Sr, et al. Occipital brain perfusion deficits in children with major depressive disorder[J]. J Nucl Med, 2001, 42(7): 1059-1061.
Ho TC, Wu J, Shin DD, et al. Altered cerebral perfusion in executive, affective, and motor networks during adolescent depression[J]. J Am Acad Child Adolesc Psychiatry, 2013, 52(10): 1076-1091.e2. DOI: 10.1016/j.jaac.2013.07.008.
Zhang N, Qin J, Yan J, et al. Increased ASL-CBF in the right amygdala predicts the first onset of depression in healthy young first-degree relatives of patients with major depression[J]. J Cereb Blood Flow Metab, 2020, 40(1): 54-66. DOI: 10.1177/0271678x19861909.
De Vis J B, Hendrikse J, Bhogal A, et al. Age-related changes in brain hemodynamics; A calibrated MRI study[J]. Hum Brain Mapp, 2015, 36(10): 3973-3987. DOI: 10.1002/hbm.22891.
Satterthwaite TD, Shinohara RT, Wolf DH, et al. Impact of puberty on the evolution of cerebral perfusion during adolescence[J]. Proc Natl Acad Sci U S A, 2014, 111(23): 8643-8648. DOI: 10.1073/pnas.1400178111.
Kaczkurkin AN, Raznahan A, Satterthwaite TD. Sex differences in the developing brain: insights from multimodal neuroimaging[J]. Neuropsychopharmacology, 2019, 44(1): 71-85. DOI: 10.1038/s41386-018-0111-z.
Ritter C, Buchmann A, Müller ST, et al. Cerebral perfusion in depression: Relationship to sex, dehydroepiandrosterone sulfate and depression severity[J/OL]. Neuroimage Clin, 2021, 32 [2022-02-08]. DOI: 10.1016/j.nicl.2021.102840.

PREV Cardiac magnetic resonance diagnosis of acute myocardial infarction with nonobstructive coronary arteries during pregnancy: One case report
NEXT Application progress of diffusion weighted magnetic resonance imaging in epilepsy

Tel & Fax: +8610-67113815    E-mail: