Share this content in WeChat
Experience Exchang
Value of magnetic resonance imaging in evaluating anatomical structure of hippocampus in patients with senile dementia
GUO Hao  HE Rongli 

Cite this article as: Guo H, He RL. Value of magnetic resonance imaging in evaluating anatomical structure of hippocampus in patients with senile dementia[J]. Chin J Magn Reson Imaging, 2022, 13(8): 75-79. DOI:10.12015/issn.1674-8034.2022.08.014.

[Abstract] Objective To investigate the value of magnetic resonance imaging (MRI) in evaluating anatomical structure of hippocampus in patients with senile dementia.Materials and Methods Ninety three patients with senile dementia admitted to Fenyang Hospital of Shanxi Province from July 2019 to July 2021 were selected as the case group. Meanwhile, 40 healthy individuals who underwent physical examination in the same hospital during the same period were selected as the control group. All subjects received MRI scanning of hippocampus. Related MRI data of hippocampus were compared between the two groups. The Montreal Cognitive Assessment (MoCA) score and the Activity of Daily Living (ADL) score were used for cognitive assessment. The correlation between related MRI data of hippocampus and cognitive function in patients with senile dementia was analyzed.Results The bilateral (left and right) hippocampal areas (HFA) (t=-5.533, -6.615; P<0.05), standardized hippocampal area (SHFA) (t=-3.824, -5.198; P<0.001), hippocampal transverse diameter (HTD) (t=-4.602, -6.212; P<0.001), and standardized hippocampal transverse diameter (SHTD) (t=-4.358, -9.464; P<0.001) of the case group were smaller than those of the control group, while the temporal horn width (THW) (t=2.564, 3.956; P<0.05), standardized temporal horn width (STHW) (t=4.076, 3.714; P<0.001) and medial temporal atrophy (MTA) (t=22.477, 19.236; P<0.001) scores were significantly higher than those of the control group. The case group had lower MoCA scores and higher ADL scores than the control group (t=15.541, 9.307, P<0.05). Pearson correlation analysis showed that patients with senile dementia left and right bilateral SHFA (r=0.303, 0.462; P<0.05), SHTD (r=0.233, 0.557; P<0.05) were positively correlated with MoCA scores; SHFA (r=0.211, 0.213; P<0.05), SHTD (r=0.330, 0.288; P<0.05) were positively correlated with ADL score, while STHW were negatively correlated with MoCA and ADL scores (r=-0.452, -0.287, P<0.05).Conclusions Hippocampal atrophy is more obvious in patients with senile dementia than in healthy people. MRI examination of hippocampus is conducive to accurate understanding of the degree of hippocampal atrophy in patients with mild senile dementia, thereby providing reference for developing clinical treatment plan.
[Keywords] senile dementia;Alzheimer's disease;magnetic resonance imaging;anatomical structure of hippocampus;application value

GUO Hao   HE Rongli*  

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China

He RL, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Applied Basic Research Project of Shanxi Province (No. 201801D121264).
Received  2022-04-06
Accepted  2022-08-05
DOI: 10.12015/issn.1674-8034.2022.08.014
Cite this article as: Guo H, He RL. Value of magnetic resonance imaging in evaluating anatomical structure of hippocampus in patients with senile dementia[J]. Chin J Magn Reson Imaging, 2022, 13(8): 75-79. DOI:10.12015/issn.1674-8034.2022.08.014.

Armstrong R A. Risk factors for Alzheimer's disease[J]. Folia Neuropathol, 2019, 57(2): 87-105. DOI: 10.5114/fn.2019.85929.
Taishi YZ, Zhao Y, An Q. Chronic cerebral ischemia, cognitive dysfunction and physiological changes of Alzheimer-like pathophy[J]. J Apoplexy Nerv Dis, 2020, 37(3): 280-284. DOI: 10.19845/j.cnki.zfysjjbzz.2020.0322.
Simunkova M, Alwasel SH, Alhazza IM, et al. Management of oxidative stress and other pathologies in Alzheimer's disease[J]. Arch Toxicol, 2019, 93(9): 2491-2513. DOI: 10.1007/s00204-019-02538-y.
Cummings JL, Tong G, Ballard C. Treatment Combinations for Alzheimer's Disease: Current and Future Pharmacotherapy Options[J]. J Alzheimers Dis, 2019, 67(3): 779-794. DOI: 10.3233/JAD-180766.
Oh ES, Rabins PV. Dementia[J]. Ann Intern Med, 2019, 171(5): 33-48. DOI: 10.7326/AITC201909030.
Ouyang LY, Yin SJ. Research on Epidemiological Status and Prevention Strategies of Senile Dementia in China[J]. Chin Soft Sci, 2019, 34(6): 50-58. DOI: 10.3969/j.issn.1002-9753.2019.06.005.
He WL, Huang G, Zhao LP. The hippocampus multimodal MRI progress of cognitive impairment[J]. Chin J Magn Reson Imaging, 2021, 12(4): 111-114. DOI: 10.12015/issn.1674-8034.2021.04.028.
Aziz W, Kraev I, Mizuno K, et al. Multi-input Synapses, but Not LTP-Strengthened Synapses, Correlate with Hippocampal Memory Storage in Aged Mice[J]. Curr Biol, 2019, 29(21): 3600-3610. DOI: 10.1016/j.cub.2019.08.064.
Rezai AR, Ranjan M, D'Haese PF, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer's disease with focused ultrasound[J]. Proc Natl Acad Sci U S A, 2020, 117(17): 9180-9182. DOI: 10.1073/pnas.2002571117.
Wang J, Hart KL, Qi W, et al. Association of Aripiprazole With Reduced Hippocampal Atrophy During Maintenance Treatment of First-Episode Schizophrenia[J]. J Clin Psychopharmacol, 2021, 41(3): 244-249. DOI: 10.1097/JCP.0000000000001391.
Balestrieri JVL, Nonato MB, Gheler L, et al. Structural Volume of Hippocampus and Alzheimer's Disease[J]. Rev Assoc Med Bras (1992), 2020, 66(4): 512-515. DOI: 10.1590/1806-9282.66.4.512.
Wang XL, Wang YM, Yang JJ, et al. Memory-dependent Neural Rhythms Coupling in Hippocampal-prefrontal Cortex Network[J]. Prog Biochem Biophys, 2021, 48(8): 907-921. DOI: 10.16476/j.pibb.2020.0410.
Chinese Guideline Writing Group for Dementia and Cognitive Impairment, Specialized Committee on Cognitive Disorders of Neurology Branch of Chinese Medical Doctor Association. Chinese Guidelines for the Diagnosis and Treatment of Dementia and Cognitive Impairment in 2018 Part 1: Diagnostic Criteria for Dementia and Its Classification[J]. Natl Med J China, 2018, 98(13): 965-970. DOI: 10.3760/cma.j.issn.0376-2491.2018.13.003.
Amoroso N, Errico R, Bruno S, et al. Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool[J]. Phys Med Biol, 2015, 60(22): 8851-8867. DOI: 10.1088/0031-9155/60/22/8851.
Traschütz A, Enkirch SJ, Polomac N, et al. The Entorhinal Cortex Atrophy Score Is Diagnostic and Prognostic in Mild Cognitive Impairment[J]. J Alzheimers Dis, 2020, 75(1): 99-108. DOI: 10.3233/JAD-181150.
Zhang LX, Liu XQ. A study on reliability and validity of MOCA scale of Chinese version[J]. Chin Nurs Res, 2007, 21(31): 2906-2907. DOI: 10.3969/j.issn.1009-6493.2007.31.044.
Xu HY, Chen LX, Chen H. Effect of Green Model on Cognitive Function, Self-care Ability and Quality of Life in Mild to Moderate Alzheimer's Disease Patients[J]. Guangdong Med J, 2019, 40(11): 129-132, 136. DOI: 10.13820/j.cnki.gdyx.20186149.
Bai GQ, Xiao RH, Chen L, et al. Sectional imaging study of the hippocampus in patients with alzheimer's disease[J]. Chinese Journal of Clinical Anatomy, 2020, 38(1): 29-34. DOI: 10.13418/j.issn.1001-165x.2020.01.007.
Kumar D, Koyanagi I, Carrier-Ruiz A, et al. Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation[J]. Neuron, 2020, 107(3): 552-565. DOI: 10.1016/j.neuron.2020.05.008.
Berlot R, Pirtošek Z, Brezovar S, et al. Cholinergic basal forebrain and hippocampal structure influence visuospatial memory in Parkinson's disease[J]. Brain Imaging Behav, 2022, 16(1): 118-129. DOI: 10.1007/s11682-021-00481-0.
Zhang KL, Li WS, Sun HZ, et al. Changes of cerebral blood flow perfusion and cerebral gray matter volume in mild Alzheimer's disease[J]. J China Clin Med Imaging, 2020, 31(4): 229-233. DOI: 10.12117/jccmi.2020.04.001.
Silson EH, Zeidman P, Knapen T, et al. Representation of Contralateral Visual Space in the Human Hippocampus[J]. J Neurosci, 2021, 41(11): 2382-2392. DOI: 10.1523/JNEUROSCI.1990-20.2020.
Kim GE, Han JW, Kim TH, et al. Hippocampus Mediates the Effect of Emotional Support on Cognitive Function in Older Adults[J]. J Gerontol A Biol Sci Med Sci, 2020, 75(8): 1502-1507. DOI: 10.1093/gerona/glz183.
Caillaud M, Hudon C, Boller B, et al. Evidence of a Relation Between Hippocampal Volume, White Matter Hyperintensities, and Cognition in Subjective Cognitive Decline and Mild Cognitive Impairment[J]. J Gerontol B Psychol Sci Soc Sci, 2020, 75(7): 1382-1392. DOI: 10.1093/geronb/gbz120.
Pemberton HG, Goodkin O, Prados F, et al. Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: a multi-rater, clinical accuracy study[J]. Eur Radiol, 2021, 31(7): 5312-5323. DOI: 10.1007/s00330-020-07455-8.
Qu W, Suazo KF, Liu W, et al. Neuronal Protein Farnesylation Regulates Hippocampal Synaptic Plasticity and Cognitive Function[J]. Mol Neurobiol, 2021, 58(3): 1128-1144. DOI: 10.1007/s12035-020-02169-w.
Wang W, Wang T, Sha LJ, et al. The event-related potential P300 and cognition changes in patients with Alzheimer's disease before and after specially designed aerobics[J]. Chin J Rehabil Med, 2019, 34(4): 371-377. DOI: 10.3969/j.issn.1001-1242.2019.04.002.
Wei Y, Huang N, Liu Y, et al. Hippocampal and Amygdalar Morphological Abnormalities in Alzheimer's Disease Based on Three Chinese MRI Datasets[J]. Curr Alzheimer Res, 2020, 17(13): 1221-1231. DOI: 10.2174/1567205018666210218150223.
Sun W, Zhao J, Li C. Dexmedetomidine Provides Protection Against Hippocampal Neuron Apoptosis and Cognitive Impairment in Mice with Alzheimer's Disease by Mediating the miR-129/YAP1/JAG1 Axis[J]. Mol Neurobiol, 2020, 57(12): 5044-5055. DOI: 10.1007/s12035-020-02069-z.
O'Callaghan C, Shine JM, Hodges JR, et al. Hippocampal atrophy and intrinsic brain network dysfunction relate to alterations in mind wandering in neurodegeneration[J]. Proc Natl Acad Sci U S A, 2019, 116(8): 3316-3321. DOI: 10.1073/pnas.1818523116.
Yang CJ, Chen JS, Zhang XF, et al. Sex difference in brain structures of hippocampus and parahippocampus among patients with bipolar typeⅠdisorde[J]. Chin J Nerv Ment Dis, 2019, 45(4): 35-39. DOI: 10.3969/j.issn.1002-0152.2019.04.007.
Zheng LJ, Lin L, Schoepf UJ, et al. Different posterior hippocampus and default mode network modulation in young APOE ε4 carriers: a functional connectome-informed phenotype longitudinal study[J]. Mol Neurobiol, 2021, 58(6): 2757-2769. DOI: 10.1007/s12035-021-02292-2.

PREV Interhemispheric voxel-mirrored homotopic connectivity in patients with type 2 diabetes
NEXT The relationship between the patterns of acute cerebral infarction and the features of vascular stenosis in moyamoya syndrome based on cerebral MRI/MRA imaging

Tel & Fax: +8610-67113815    E-mail: