Share this content in WeChat
Technical Article
Comparative study on three kinds of 3.0 T MRI sequences for lumbar facet joint cartilage
LUO Muqing  LI Hongwei  ZHANG Kun  MA Mengtian  LIAO Yunjie  Yan Luyou  GAO Hui  LI Ping 

Cite this article as: Luo MQ, Li HW, Zhang K, et al. Comparative study on three kinds of 3.0 T MRI sequences for lumbar facet joint cartilage[J]. Chin J Magn Reson Imaging, 2022, 13(8): 65-70. DOI:10.12015/issn.1674-8034.2022.08.012.

[Abstract] Objective To compare the image quality and imaging characteristics of three 3.0 T MRI sequences of lumbar facet joint cartilage.Materials and Methods Thirty healthy subjects were studied with four chosen sequences using a 3.0 T MRI scanner. The sequences were T1WI/T2WI, water excitation three-dimensional spoiled gradient echo sequence (3D-WATSc), three-dimensional T1 fast field echo (3D-T1-FFE) and three-dimensional proton density weighted imaging volumetric isotropic turbo spin echo acquisition (3D-PDWI-VISTA). Two radiologists subjectively evaluated these MRI images qualitatively and quantitatively. Qualitative evaluation index including cartilage signal uniformity, cartilage-joint space edge sharpness, cartilage-bone edge sharpness, cartilage-joint space contrast, cartilage-bone contrast. Quantitative indicators include signal to noise ratio (SNR) and contrast to noise ratio (CNR).Results The 3D-WATSc had the highest scores among the 5 qualitative indexes, and the 3D-T1-FFE had the second-highest scores. Only the difference of signal uniformity between the two was statistically significant (P<0.05). The 3D-PDWI-VISTA is almost indistinguishable from the anatomical structure of the lumbar facet joint. The 3D-WATSc showed that cartilage SNR [L4/L5 (70.73±14.86), L5/S1 (73.50±13.63)] and the CNR of cartilage-space [L4/L5 (25.30±8.44), L5/S1 (21.64±13.01)], cartilage-bone [L4/L5 (60.75±14.68), L5/S1 (64.31±12.98)], and cartilage-bone marrow [L4/L5 (50.22±14.33), L5/S1 (54.46±10.99)] were higher than that of 3D-T1-FFE, and the difference were statistically significant (P<0.05).Conclusions The 3D-WATSc can present the anatomical structure of lumbar facet joints in detail, which is superior to 3D-T1-FFE and 3D-PDWI-VISTA. 3D-WATSc has advantage in imaging of lumbar facet joint cartilage and clinical diagnosis of lumbar facet joint degeneration.
[Keywords] magnetic resonance imaging;lumbar facet joint;articular cartilage;degeneration;sequence

LUO Muqing1   LI Hongwei2   ZHANG Kun1*   MA Mengtian3   LIAO Yunjie3   Yan Luyou1   GAO Hui1   LI Ping1  

1 Department of Radiology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China

2 Department of Radiology, Huaihua Hospital of Traditional Chinese Medicine, Huaihua 418099, China

3 Department of Radiology, the Third Xiangya Hospital of Central South University, Changsha 410003, China

Zhang K, E-mail:

Conflicts of interest   None.

Received  2022-04-08
Accepted  2022-07-28
DOI: 10.12015/issn.1674-8034.2022.08.012
Cite this article as: Luo MQ, Li HW, Zhang K, et al. Comparative study on three kinds of 3.0 T MRI sequences for lumbar facet joint cartilage[J]. Chin J Magn Reson Imaging, 2022, 13(8): 65-70.DOI:10.12015/issn.1674-8034.2022.08.012

Inoue N, Orías A, Segami K. Biomechanics of the lumbar facet joint[J]. Spine Surg Relat Res, 2019, 4(1): 1-7. DOI: 10.22603/ssrr.2019-0017.
Won HS, Yang M, Kim YD. Facet joint injections for management of low back pain: a clinically focused review[J]. Anesth Pain Med (Seoul), 2020, 15(1): 8-18. DOI: 10.17085/apm.2020.15.1.8.
Perolat R, Kastler A, Nicot B, et al. Facet joint syndrome: from diagnosis to interventional management[J]. Insights Imaging, 2018, 9(5): 773-789. DOI: 10.1007/s13244-018-0638-x.
Banjar M, Horiuchi S, Gedeon DN, et al. Review of quantitative knee articular cartilage MR imaging[J]. Magn Reson Med Sci, 2022, 21(1): 29-40. DOI: 10.2463/mrms.rev.2021-0052.
Żylińska B, Sobczyńska-Rak A, Lisiecka U, et al. Structure and pathologies of articular cartilage[J]. In Vivo, 2021, 35(3): 1355-1363. DOI: 10.21873/invivo.12388.
Kwee RM, Kwee TC. Imaging of facet joint diseases[J]. Clin Imaging, 2021, 80: 167-179. DOI: 10.1016/j.clinimag.2021.07.005.
Luo MQ, Feng ZC, Liao YJ, et al. Combination of 3.0T magnetic resonance imaging T2mapping with texture analysis for evaluating the degeneration of lumbar facet joints[J]. J Central South Univ Med Sci, 2020, 45(7): 827-833. DOI: 10.11817/j.issn.1672-7347.2020.190640.
Oei EHG, van Zadelhoff TA, Eijgenraam SM, et al. 3D MRI in osteoarthritis[J]. Semin Musculoskelet Radiol, 2021, 25(3): 468-479. DOI: 10.1055/s-0041-1730911.
Little JW, Grieve T, Cantu J, et al. Reliability of human lumbar facet joint degeneration severity assessed by magnetic resonance imaging[J]. J Manipulative Physiol Ther, 2020, 43(1): 43-49. DOI: 10.1016/j.jmpt.2018.11.027.
MacKay JW, Kaggie JD, Treece GM, et al. Three-dimensional surface-based analysis of cartilage MRI data in knee osteoarthritis: validation and initial clinical application[J]. J Magn Reson Imaging, 2020, 52(4): 1139-1151. DOI: 10.1002/jmri.27193.
Said O, Schock J, Krämer N, et al. An MRI-compatible varus-valgus loading device for whole-knee joint functionality assessment based on compartmental compression: a proof-of-concept study[J]. MAGMA, 2020, 33(6): 839-854. DOI: 10.1007/s10334-020-00844-6.
Liu RW, Li DZ, Jian XM, et al. Clinical research of water excitation three-dimensional spoiled gradient echo sequence in articular cartilage injury of knee[J]. J Pract Med Tech, 2013, 20(3): 232-234. DOI: 10.3969/j.issn.1671-5098.2013.03.002.
Bapst B, Amegnizin JL, Vignaud A, et al. Post-contrast 3d t1-weighted tse mr sequences (space, cube, vista/brainview, isofse, 3d mvox): technical aspects and clinical applications[J]. J De Neuroradiol, 2020, 47(5): 358-368. DOI: 10.1016/j.neurad.2020.01.085.
Park HJ, Lee SY, Kang KA, et al. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist[J/OL]. Br J Radiol, 2018 [2022-04-08]. DOI: 10.1259/bjr.20170604.
Kinoshita N, Tanaka S, Sugimori Y, et al. High contrast between lumbar nerve roots and surrounding structures using dual echo 3D turbo spin echo additional fusion images[J]. Jpn J Radiol, 2018, 36(8): 472-476. DOI: 10.1007/s11604-018-0751-2.
Wang LZ, Chen JX, Zhang Y, et al. The diagnostic value of 3D-WATSc sequence in articular cartilage injury of knee[J]. J Clin Radiol, 2012, 31(7): 1003-1006. DOI: 10.13437/j.cnki.jcr.2012.07.018.
Kijowski R. 3D MRI of articular cartilage[J]. Semin Musculoskelet Radiol, 2021, 25(3): 397-408. DOI: 10.1055/s-0041-1730913.
Lee YH, Hahn S, Lim D, et al. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE)[J]. Acta Radiol, 2017, 58(2): 190-196. DOI: 10.1177/0284185116646142.
Lee JH, Yoon YC, Park KJ, et al. Diagnosis of internal derangement of the knee: volume isotropic turbo spin-echo acquisition MRI with fat suppression versus without fat suppression[J]. AJR Am J Roentgenol, 2017, 208(6): 1304-1311. DOI: 10.2214/AJR.16.17217.
Cheng KY, Lombardi AF, Chang EY, et al. Knee cartilage imaging[J]. Clin Sports Med, 2021, 40(4): 677-692. DOI: 10.1016/j.csm.2021.05.006.
Fritz B, Fritz J, Sutter R. 3D MRI of the ankle: a concise state-of-the-art review[J]. Semin Musculoskelet Radiol, 2021, 25(3): 514-526. DOI: 10.1055/s-0041-1731332.
Morita K, Nakaura T, Maruyama N, et al. Hybrid of compressed sensing and parallel imaging applied to three-dimensional isotropic T2-weighted turbo spin-echo MR imaging of the lumbar spine[J]. Magn Reson Med Sci, 2020, 19(1): 48-55. DOI: 10.2463/
Lee S, Hwang J, Ko J, et al. Comparison between T2-weighted two-dimensional and three-dimensional fast spin-echo MRI sequences for characterizing thoracolumbar intervertebral disc disease in small-breed dogs[J]. Vet Radiol Ultrasound, 2022, 63(2): 216-223. DOI: 10.1111/vru.13049.
Khan MCM, O'Donovan J, Charlton JM, et al. The influence of running on lower limb cartilage: a systematic review and Meta-analysis[J]. Sports Med, 2022, 52(1): 55-74. DOI: 10.1007/s40279-021-01533-7.
Park HJ, Lee SY, Choi YJ, et al. 3isotropic TD2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane[J/OL]. Clin Radiol, 2017 [2022-04-08]. DOI: 10.1016/j.crad.2016.09.023.
Park HJ, Lee SY, Choi YJ, et al. The usefulness of the oblique coronal plane of three-dimensional isotropic T2-weighted fast spin-echo (VISTA) knee MRI in the evaluation of posterior cruciate ligament reconstruction with allograft: comparison with the oblique coronal plane of two-dimensional fast spin-echo T2-weighted sequences[J]. Eur J Radiol, 2019, 114: 105-110. DOI: 10.1016/j.ejrad.2019.03.009.
Haneda J, Ishikawa K, Okamoto K. Better continuity of the facial nerve demonstrated in the temporal bone on three-dimensional T1-weighted imaging with volume isotropic turbo spin echo acquisition than that with fast field echo at 3.0 tesla MRI[J]. J Med Imaging Radiat Oncol, 2019, 63(6): 745-750. DOI: 10.1111/1754-9485.12962.
Ochman S, Wieskötter B, Langer M, et al. High-resolution MRI (3T-MRI) in diagnosis of wrist pain: is diagnostic arthroscopy still necessary?[J]. Arch Orthop Trauma Surg, 2017, 137(10): 1443-1450. DOI: 10.1007/s00402-017-2747-2.
Kim HS, Yoon YC, Kwon JW, et al. Qualitative and quantitative assessment of isotropic ankle magnetic resonance imaging: three-dimensional isotropic intermediate-weighted turbo spin echo versus three-dimensional isotropic fast field echo sequences[J]. Korean J Radiol, 2012, 13(4): 443-449. DOI: 10.3348/kjr.2012.13.4.443.
Altahawi F, Pierce J, Aslan M, et al. 3D MRI of the knee[J]. Semin Musculoskelet Radiol, 2021, 25(3): 455-467. DOI: 10.1055/s-0041-1730400.

PREV A resting-state fMRI study on the verbal fluency decline in mild cognitive impairment
NEXT Interhemispheric voxel-mirrored homotopic connectivity in patients with type 2 diabetes

Tel & Fax: +8610-67113815    E-mail: