Share this content in WeChat
Original Article
A resting-state fMRI study on the verbal fluency decline in mild cognitive impairment
GUO Chunlei  HE Jiakai  MA Yue  SUN Jifei  ZHANG Binlong  WANG Zhi  HONG Yang  ZHANG Lei  FANG Jiliang  LUO Ping 

Cite this article as: Guo CL, He JK, Ma Y, et al. A resting-state fMRI study on the verbal fluency decline in mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(8): 60-64, 74. DOI:10.12015/issn.1674-8034.2022.08.011.

[Abstract] Objective Amplitude of low frequency fluctuation (ALFF) was used to preliminarily explore the brain mechanism of verbal fluency decline in patients with mild cognitive impairment (MCI).Materials and Methods A total of 20 MCI patients (MCI group) and 16 healthy controls (healthy controls group) matched in gender, age and education level were recruited prospectively. Before enrollment, clinical data, neuropsychological scales and resting-state functional magnetic resonance imaging data were collected. ALFF was used to compare the differences of resting-state brain function between MCI group and healthy controls group, and the Spearman correlation between the change brain regions of ALFF and verbal fluency scales was further observed.Results Compared with the healthy control group, the ALFF of the right insula/superior temporal gyrus was decreased in MCI group (Gaussian random field correction, voxel P<0.005, cluster P<0.05). No ALFF elevation was found in brain regions. There was a significant positive correlation between reduced ALFF and fluency test of Montreal cognitive assessment-basic(rs=0.500, P=0.025).Conclusions MCI has decreased brain activity in the right insula/superior temporal gyrus, which may be underlying the mechanism of patient's verbal fluency decline.
[Keywords] mild cognitive impairment;resting state functional magnetic resonance imaging;low frequency amplitude;verbal fluency decline;insula;superior temporal gyrus

GUO Chunlei1   HE Jiakai2   MA Yue1   SUN Jifei1   ZHANG Binlong3   WANG Zhi1   HONG Yang4   ZHANG Lei4   FANG Jiliang1*   LUO Ping4*  

1 Functional Imaging Laboratory, Guang′anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China

2 Funtion Laboratory, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China

3 Department of Acupuncture and Moxibustion, Guang′anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China

4 Department of Radiology, Guang′anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China

Luo P, E-mail: Fang JL, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Beijing Natural Science Foundation (No. 7212191); Science and Technology Innovation Project of China Academy of Chinese Medical Sciences (No. CI2021A03316).
Received  2022-04-27
Accepted  2022-08-01
DOI: 10.12015/issn.1674-8034.2022.08.011
Cite this article as: Guo CL, He JK, Ma Y, et al. A resting-state fMRI study on the verbal fluency decline in mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(8): 60-64, 74. DOI:10.12015/issn.1674-8034.2022.08.011.

Shi LP, Yao SH, Wang W. Prevalence and distribution trends of mild cognitive impairment among Chinese older adults: a meta-analysis[J]. Chin Gen Pract, 2022, 25(1): 109-114. DOI: 10.12114/j.issn.1007-9572.2021.00.315.
McGirr A, Nathan S, Ghahremani M, et al. Progression to dementia or reversion to normal cognition in mild cognitive impairment as a function of late-onset neuropsychiatric symptoms[J/OL]. Neurology, 2022, 98(21) [2022-04-17]. DOI: 10.1212/WNL.0000000000200256.
Li ZH, Heckman MG, Kanekiyo T, et al. Clinicopathologic factors associated with reversion to normal cognition in patients with mild cognitive impairment[J/OL]. Neurology, 2022, 98(20) [2022-04-17]. DOI: 10.1212/WNL.0000000000200387.
Iraniparast M, Shi YD, Wu Y, et al. Cognitive reserve and mild cognitive impairment: predictors and rates of reversion to intact cognition vs progression to dementia[J/OL]. Neurology, 2022, 98(11) [2022-04-17]. DOI: 10.1212/WNL.0000000000200051.
Balogh R, Imre N, Gosztolya G, et al. The role of silence in verbal fluency tasks - A new approach for the detection of mild cognitive impairment[J]. J Int Neuropsychol Soc, 2022: 1-13. DOI: 10.1017/S1355617721001454.
López-Higes R, Rubio-Valdehita S, Llorente-Morales C, et al. Animals in multidimensional space: interpreting coordinates throughout lexical-semantic features in mild cognitive impairment and control subjects[J]. J Clin Exp Neuropsychol, 2021, 43(10): 1018-1031. DOI: 10.1080/13803395.2022.2057443.
Wajman JR, Cecchini MA. A simple counting of verbal fluency errors discriminates between normal cognition, mild cognitive impairment and Alzheimer's disease[J]. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 2022: 2(17): 1-18. DOI: 10.1080/13825585.2022.2035668.
Poldrack RA, Baker CI, Durnez J, et al. Scanning the horizon: towards transparent and reproducible neuroimaging research[J]. Nat Rev Neurosci, 2017, 18(2): 115-126. DOI: 10.1038/nrn.2016.167.
Lin L, Xing G, Han Y. Advances in resting state neuroimaging of mild cognitive impairment[J/OL]. Front Psychiatry, 2018, 9 [2022-04-17]. DOI: 10.3389/fpsyt.2018.00671.
Ibrahim B, Suppiah S, Ibrahim N, et al. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: a systematic review[J]. Hum Brain Mapp, 2021, 42(9): 2941-2968. DOI: 10.1002/hbm.25369.
McLaren CE, Chen WP, O'Sullivan TD, et al. Sample size and power determination when limited preliminary information is available[J/OL]. BMC Med Res Methodol, 2017, 17(1) [2022-04-17]. DOI: 10.1186/s12874-017-0329-1.
Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses[J]. J Neurosci Methods, 2002, 118(2): 115-128. DOI: 10.1016/s0165-0270(02)00121-8.
Terry DP, Sabatinelli D, Puente AN, et al. A meta-analysis of fMRI activation differences during episodic memory in Alzheimer's disease and mild cognitive impairment[J]. J Neuroimaging, 2015, 25(6): 849-860. DOI: 10.1111/jon.12266.
Bondi MW, Edmonds EC, Jak AJ, et al. Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates[J]. J Alzheimers Dis, 2014, 42(1): 275-289. DOI: 10.3233/JAD-140276.
Devlin KN, Brennan L, Saad L, et al. Diagnosing mild cognitive impairment among racially diverse older adults: comparison of consensus, actuarial, and statistical methods[J]. J Alzheimers Dis, 2022, 85(2): 627-644. DOI: 10.3233/JAD-210455.
Hong LW, Zeng QZ, Li KC, et al. Intrinsic brain activity of inferior temporal region increased in prodromal Alzheimer's disease with hearing loss[J/OL]. Front Aging Neurosci, 2021, 13 [2022-04-17]. DOI: 10.3389/fnagi.2021.
Chang WW, Lv ZX, Pang XM, et al. The local neural markers of MRI in patients with temporal lobe epilepsy presenting ictal panic: a resting resting-state postictal fMRI study[J/OL]. Epilepsy Behav, 2022 [2022-04-17]. DOI: 10.1016/j.yebeh.2021.108490.
Martz E, Weibel S, Weiner L. An overactive mind: investigating racing thoughts in ADHD, hypomania and comorbid ADHD and bipolar disorder via verbal fluency tasks[J]. J Affect Disord, 2022, 300: 226-234. DOI: 10.1016/j.jad.2021.12.060.
Ni JQ, Cai XY, Duan XY, et al. Clinical studies on the impairment attention function in mild cognitive impairment patients with two different kinds[J]. Chin J Clin Neurosci, 2010, 18(6): 596-598, 605. DOI: 10.3969/j.issn.1008-0678.2010.06.007.
Madore KP, Khazenzon AM, Backes CW, et al. Memory failure predicted by attention lapsing and media multitasking[J]. Nature, 2020, 587(7832): 87-91. DOI: 10.1038/s41586-020-2870-z.
Brandes Lourenço R, Machado de Campos B, Rizzi L, et al. Functional connectome analysis in mild cognitive impairment: comparing Alzheimer's disease continuum and suspected non-alzheimer pathology[J/OL]. Brain Connect, 2022 [2022-06-20]. DOI: 10.1089/brain.2021.0154.
Xue C, Qi WZ, Yuan QQ, et al. Disrupted dynamic functional connectivity in distinguishing subjective cognitive decline and amnestic mild cognitive impairment based on the triple-network model[J/OL]. Front Aging Neurosci, 2021, 13 [2022-04-17]. DOI: 10.3389/fnagi.2021.711009.
Ackermann H, Riecker A. The contribution(s) of the insula to speech production: a review of the clinical and functional imaging literature[J]. Brain Struct Funct, 2010, 214(5/6): 419-433. DOI: 10.1007/s00429-010-0257-x.
Oh A, Duerden EG, Pang EW. The role of the insula in speech and language processing[J]. Brain Lang, 2014, 135: 96-103. DOI: 10.1016/j.bandl.2014.06.003.
Wang CH, Miao PF, Liu JC, et al. Validation of cerebral blood flow connectivity as imaging prognostic biomarker on subcortical stroke[J]. J Neurochem, 2021, 159(1): 172-184. DOI: 10.1111/jnc.15359.
Bi XA, Zhou WY, Li L, et al. Detecting risk gene and pathogenic brain region in EMCI using a novel GERF algorithm based on brain imaging and genetic data[J]. IEEE J Biomed Health Inform, 2021, 25(8): 3019-3028. DOI: 10.1109/JBHI.2021.3067798.
Duan WN, Zhou GD, Balachandrasekaran A, et al. Cerebral blood flow predicts conversion of mild cognitive impairment into Alzheimer's disease and cognitive decline: an arterial spin labeling follow-up study[J]. J Alzheimers Dis, 2021, 82(1): 293-305. DOI: 10.3233/JAD-210199.
Fan X, Yang YH, Jia XQ, et al. Amplitude of low-frequency fluctuation of functional magnetic resonance imaging in mild cognitive impairment[J]. J Cap Med Univ, 2018, 39(2): 163-166. DOI: 10.3969/j.issn.1006-7795.2018.02.002.
Zhao C, Zhang M, An YH, et al. Changes of functional connectivity between the right anterior insula and the frontal operculum in mild cognitive impairment[J]. Chin J Geriatr Heart Brain Vessel Dis, 2019, 21(5): 494-498. DOI: 10.3969/j.issn.1009-0126.2019.05.013.
Hu QL, Wang QQ, Li YF, et al. Intrinsic brain activity alterations in patients with mild cognitive impairment-to-normal reversion: a resting-state functional magnetic resonance imaging study from voxel to whole-brain level[J/OL]. Front Aging Neurosci, 2021. [2022-04-17]. DOI: 10.3389/fnagi.2021.788765.
Ding H, Ming D, Wan BK, et al. Enhanced spontaneous functional connectivity of the superior temporal gyrus in early deafness[J/OL]. Sci Rep, 2016 [2022-04-17]. DOI: 10.1038/srep23239.
Chinese Guidance group for diagnosis and treatment of dementia and Cognitive Impairment, Professional Committee of Cognitive Impairment Diseases of Neurology Branch of Chinese Medical Doctor Association. 2018 Chinese Guidelines for the Diagnosis and treatment of Dementia and Cognitive Impairment (V): Diagnosis and treatment of mild cognitive impairment[J]. Natl Med J China, 2018, 98(17): 1294-1301. DOI: 10.3760/cma.j.issn.0376-2491.2018.17.003.
Loughrey DG, Kelly ME, Kelley GA, et al. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: a systematic review and meta-analysis[J]. JAMA Otolaryngol Head Neck Surg, 2018, 144(2): 115-126. DOI: 10.1001/jamaoto.2017.2513.
Nixon GK, Sarant JZ, Tomlin D. Peripheral and central hearing impairment and their relationship with cognition: a review[J]. Int J Audiol, 2019, 58(9): 541-552. DOI: 10.1080/14992027.2019.1591644.
Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain[J]. Nat Rev Neurosci, 2001, 2(10): 685-694. DOI: 10.1038/35094500.
Zhang MC, Bernhardt BC, Wang XY, et al. Perceptual coupling and decoupling of the default mode network during mind-wandering and reading[J/OL]. eLife, 2022, 11 [2022-04-17]. DOI: 10.7554/eLife.74011.
Liang JL, Li YF, Liu H, et al. Increased intrinsic default-mode network activity as a compensatory mechanism in aMCI: a resting-state functional connectivity MRI study[J]. Aging (Albany NY), 2020, 12(7): 5907-5919. DOI: 10.18632/aging.102986.
Anderson ND. State of the science on mild cognitive impairment (MCI)[J]. CNS Spectr, 2019, 24(1): 78-87. DOI: 10.1017/S1092852918001347.
Wirth M, Pichet Binette A, Brunecker P, et al. Divergent regional patterns of cerebral hypoperfusion and gray matter atrophy in mild cognitive impairment patients[J]. J Cereb Blood Flow Metab, 2017, 37(3): 814-824. DOI: 10.1177/0271678X16641128.
Wang TL, Zhao XY, Wu Y, et al. Regional homogeneity and whole brain functional connectivity in subjects with mild cognitive impairment[J]. Chin J Geriatr, 2021, 40(8): 1000-1004. DOI: 10.3760/cma.j.issn.0254-9026.2021.08.013.
Wu QJ, Guo ZJ, Liu SE, et al. The relationship between episodic memory and functional connectivity in the resting brain in patients with mild cognitive impairment[J]. Acta Acad Med Qingdao Univ, 2013, 49(3): 192-195.
Fam J, Sun Y, Qi P, et al. Mindfulness practice alters brain connectivity in community-living Elders with mild cognitive impairment[J]. Psychiatry Clin Neurosci, 2020, 74(4): 257-262. DOI: 10.1111/pcn.12972.
Pan PL, Zhu L, Yu TT, et al. Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: a meta-analysis of resting-state fMRI studies[J]. Ageing Res Rev, 2017, 35: 12-21. DOI: 10.1016/j.arr.2016.12.001.
Song Y, Xu WW, Chen SS, et al. Functional MRI-specific alterations in salience network in mild cognitive impairment: an ALE meta-analysis[J/OL]. Front Aging Neurosci, 2021 [2022-04-17]. DOI: 10.3389/fnagi.2021.695210.
Zacková L, Jáni M, Brázdil M, et al. Cognitive impairment and depression: Meta-analysis of structural magnetic resonance imaging studies[J/OL]. Neuroimage Clin, 2021, 32 [2022-04-17]. DOI: 10.1016/j.nicl.2021.102830.
Yu HK, Dong L, Yang K, et al. Multi? modal evaluation of Alzheimer disease by using joint independent component analysis of functional MRI diffusion tensor imaging[J]. Chin J Radiol, 2019, 53(8): 672-677. DOI: 10.3760/cma.j.issn.1005?1201.2019.08.003.
Zhuang LY, Liu XY, Xu XH, et al. Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment[J/OL]. J Neuroinflammation, 2012, 9 [2022-04-17].

PREV The value of quantitative assessment of lumbar disc degeneration with T2 mapping: A Meta analysis
NEXT Comparative study on three kinds of 3.0 T MRI sequences for lumbar facet joint cartilage

Tel & Fax: +8610-67113815    E-mail: