Share:
Share this content in WeChat
X
Clinical Article
A comparative study of amide proton transfer weighted imaging and intravoxel incoherent motion imaging in the diagnosis of pathological grade of lung adenocarcinoma and its correlation with SUVmax
FENG Pengyang  MENG Nan  FANG Ting  DONG Bai  YANG Yang  YUAN Jianmin  WEI Wei  WANG Meiyun  WU Yaping 

Cite this article as: Feng PY, Meng N, Fang T, et al. A comparative study of amide proton transfer weighted imaging and intravoxel incoherent motion imaging in the diagnosis of pathological grade of lung adenocarcinoma and its correlation with SUVmax[J]. Chin J Magn Reson Imaging, 2022, 13(8): 24-29. DOI:10.12015/issn.1674-8034.2022.08.005.


[Abstract] Objective To compare the value of amide amide proton transfer-weighted imaging (APTWI) and intravoxel incoherent motion (IVIM) imaging in identifying the pathological grade of lung adenocarcinoma, and to assess the correlation between each parameter and the metabolic parameter maximum standard uptake value (SUVmax) of 18F-FDG positron emission tomography (PET).Materials and Methods A total of 66 patients with postoperative pathologically confirmed lung adenocarcinoma were prospectively collected. APTWI, IVIM and 18F-FDG PET images were analyzed to measure the magnetization transfer ratio asymmetry [MTRasym (3.5 ppm)], diffusion coefficient (D), false diffusion coefficient (D*), perfusion fraction (f), distributed diffusion coefficient (DDC),diffusion heterogeneity index (α) and maximum standard uptake value (SUVmax). The differences and diagnostic efficacy of each parameter between different grading groups were compared and analyzed, and the correlation between each parameter value and SUVmax was evaluated.Results MTRasym (3.5 ppm) and f values in poorly differentiated group were higher than those in moderately/well differentiated group, while D and DDC values were lower than those in moderately/well differentiated group (all P<0.05), there was no significant difference in D* and α values between the two groups. The AUC of MTRasym (3.5 ppm), D, DDC, f, α, and D* values for diagnosing the pathological grade of lung adenocarcinoma were 0.858, 0.743, 0.661, 0.645, 0.577, 0.531, respectively. The diagnostic efficiency of MTRasym (3.5 ppm) was significantly higher than that of other parameters except D value (P<0.05). The combination of APTWI and IVIM had the highest diagnostic performance in identifying pathological grade (AUC=0.973). There was a weak positive correlation between MTRasym (3.5 ppm) and SUVmax value (r=0.396); D and DDC values were weakly negatively correlated with SUVmax value respectively (r=-0.359, -0.249, P<0.05).Conclusions Both APTWI and IVIM are effective means to identify the pathological grade of lung adenocarcinoma. The diagnostic efficiency of APTWI parameters is better than IVIM, and some parameters are correlated with SUVmax.
[Keywords] positron emission tomography/magnetic resonance;amide proton transfer-weighted imaging;intravoxel incoherent motion;maximum standard uptake value;lung adenocarcinoma;pathological grade;differential diagnosis;correlation

FENG Pengyang1   MENG Nan2   FANG Ting2   DONG Bai3   YANG Yang4   YUAN Jianmin5   WEI Wei6   WANG Meiyun1, 2*   WU Yaping6  

1 Department of Radiology, Henan University People's Hospital (Henan Provincial People's Hospital), Zhengzhou 450003, China

2 Department of Radiology, Zhengzhou University People's Hospital, Zhengzhou 450003, China

3 Department of Orthopedics, Henan University People's Hospital, Zhengzhou 450003, China

4 Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China

5 Shanghai United Imaging Medical Technology Co., Ltd., Shanghai 201815, China

6 Department of Radiology, Henan Provincial People's Hospital, Zhengzhou 450003, China

Wang MY, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2022-03-19
Accepted  2022-07-27
DOI: 10.12015/issn.1674-8034.2022.08.005
Cite this article as: Feng PY, Meng N, Fang T, et al. A comparative study of amide proton transfer weighted imaging and intravoxel incoherent motion imaging in the diagnosis of pathological grade of lung adenocarcinoma and its correlation with SUVmax[J]. Chin J Magn Reson Imaging, 2022, 13(8): 24-29.DOI:10.12015/issn.1674-8034.2022.08.005

[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
[2]
Mao YS, Yang D, He J, et al. Epidemiology of lung cancer[J]. Surg Oncol Clin N Am, 2016, 25(3): 439-445. DOI: 10.1016/j.soc.2016.02.001.
[3]
Jiang HF, Li X. Correlation of dual-source computed tomography/dual-energy imaging with pathological grading of lung adenocarcinoma and its clinical value[J]. Pak J Med Sci, 2017, 33(6): 1429-1433. DOI: 10.12669/pjms.336.13320.
[4]
Meng N, Fang T, Feng PY, et al. Amide proton transfer-weighted imaging and multiple models diffusion-weighted imaging facilitates preoperative risk stratification of early-stage endometrial carcinoma[J]. J Magn Reson Imaging, 2021, 54(4): 1200-1211. DOI: 10.1002/jmri.27684.
[5]
Lecler A, Duron L, Zmuda M, et al. Intravoxel incoherent motion (IVIM) 3 T MRI for orbital lesion characterization[J]. Eur Radiol, 2021, 31(1): 14-23. DOI: 10.1007/s00330-020-07103-1.
[6]
Lin L, Xue Y, Duan Q, et al. Grading meningiomas using mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging[J/OL]. Clin Radiol, 2019, 74(8) [2022-03-19]. https://linkinghub.elsevier.com/retrieve/pii/S0009-9260(19)30194-1. DOI: 10.1016/j.crad.2019.04.007.
[7]
Nishie A, Asayama Y, Ishigami K, et al. Amide proton transfer imaging to predict tumor response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Gastroenterol Hepatol, 2019, 34(1): 140-146. DOI: 10.1111/jgh.14315.
[8]
Canese R. Editorial for "comparative analysis of amide proton transfer MRI and diffusion-weighted imaging in assessing p53 and ki-67 expression of rectal adenocarcinoma"[J]. J Magn Reson Imaging, 2020, 52(5): 1497-1498. DOI: 10.1002/jmri.27265.
[9]
Yin L, Liao XH, Zhang JH, et al. Research progress of semi-quantitative parameters assessed on 18F-FDG PET/CT for prognosis of non-small cell lung cancer[J]. Chin J Interv Imaging Ther, 2019, 16(8): 507-510. DOI: 10.13929/j.1672-8475.201905010.
[10]
Fang T, Meng N, Feng PY, et al. A comparative study of amide proton transfer weighted imaging and intravoxel incoherent motion MRI techniques versus (18) F-FDG PET to distinguish solitary pulmonary lesions and their subtypes[J]. J Magn Reson Imaging, 2022, 55(5): 1376-1390. DOI: 10.1002/jmri.27977.
[11]
Deng QM, Li CJ, Wu XT, et al. The value of apparent diffusion coefficient of different b values in distinguishing pathological types of lung cancer and differentiation of adenocarcinoma[J]. Jilin Med J, 2020, 41(12): 2844-2847. DOI: 10.3969/j.issn.1004-0412.2020.12.009.
[12]
Sun XY, Chen TX, Chang C, et al. SUVmax of 18FDG PET/CT predicts histological grade of lung adenocarcinoma[J]. Acad Radiol, 2021, 28(1): 49-57. DOI: 10.1016/j.acra.2020.01.030.
[13]
Weber W. Clinical PET/MR[J]. Recent Results Cancer Res, 2020, 216: 747-764. DOI: 10.1007/978-3-030-42618-7_22.
[14]
Peng Q, Huang Y, Tang W, et al. Comparison of parameters for diffusion-weighted intravoxel incoherent motion imaging in lung cancer patients with different histopathological subtypes[J]. Chin J Oncol, 2018, 40(11): 824-828. DOI: 10.3760/cma.j.issn.0253-3766.2018.11.005.
[15]
Ren HW, Liu Y, Lu J, et al. Evaluating the clinical value of MRI multi-model diffusion-weighted imaging on liver fibrosis in chronic hepatitis B patients[J]. Abdom Radiol (NY), 2021, 46(4): 1552-1561. DOI: 10.1007/s00261-020-02806-x.
[16]
Wei Y, Gao FF, Huang ZX, et al. Preliminary study of whole-tumor volume analysis of mono-exponential and intravoxel incoherent motion models in the preoperative histologic grading of hepatocellular carcinoma[J]. Natl Med J China, 2018, 98(31): 2460-2465. DOI: 10.3760/cma.j.issn.0376-2491.2018.31.002.
[17]
Ma WL, Zhang GW, Ren J, et al. Quantitative parameters of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI): potential application in predicting pathological grades of pancreatic ductal adenocarcinoma[J]. Quant Imaging Med Surg, 2018, 8(3): 301-310. DOI: 10.21037/qims.2018.04.08.
[18]
Zhang JJ, Suo ST, Liu GQ, et al. Comparison of monoexponential, biexponential, stretched-exponential, and kurtosis models of diffusion-weighted imaging in differentiation of renal solid masses[J]. Korean J Radiol, 2019, 20(5): 791-800. DOI: 10.3348/kjr.2018.0474.
[19]
Huang Z, Li XC, Wang ZX, et al. Application of simultaneous 18 F-FDG PET with monoexponential, biexponential, and stretched exponential model-based diffusion-weighted MR imaging in assessing the proliferation status of lung adenocarcinoma[J]. J Magn Reson Imaging, 2022, 56(1): 63-74. DOI: 10.1002/jmri.28010.
[20]
Ray KJ, Simard MA, Larkin JR, et al. Tumor pH and protein concentration contribute to the signal of amide proton transfer magnetic resonance imaging[J]. Cancer Res, 2019, 79(7): 1343-1352. DOI: 10.1158/0008-5472.CAN-18-2168.
[21]
Li GM, Jiang GH, Mei YJ, et al. Applying amide proton transfer-weighted imaging (APTWI) to distinguish papillary thyroid carcinomas and predominantly solid adenomatous nodules: comparison with diffusion-weighted imaging[J/OL]. Front Oncol, 2020, 10 [2022-03-19]. https://www.frontiersin.org/articles/10.3389/fonc.2020.00918. DOI: 10.3389/fonc.2020.00918.
[22]
Su C, Liu C, Zhao L, et al. Amide proton transfer imaging allows detection of glioma grades and tumor proliferation: comparison with ki-67 expression and proton MR spectroscopy imaging[J]. AJNR Am J Neuroradiol, 2017, 38(9): 1702-1709. DOI: 10.3174/ajnr.A5301.
[23]
Meng N, Wang XJ, Sun J, et al. Evaluation of amide proton transfer-weighted imaging for endometrial carcinoma histological features: a comparative study with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(11): 8388-8398. DOI: 10.1007/s00330-021-07966-y.
[24]
Li BB, Sun HZ, Zhang SY, et al. Amide proton transfer imaging to evaluate the grading of squamous cell carcinoma of the cervix: a comparative study using 18 F FDG PET[J]. J Magn Reson Imaging, 2019, 50(1): 261-268. DOI: 10.1002/jmri.26572.
[25]
Hou MY, Song K, Ren JP, et al. Comparative analysis of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in evaluating the histological grade of cervical squamous carcinoma[J/OL]. BMC Cancer, 2022, 22(1) [2022-03-19]. https://bmccancer.biomedcentral.com/articles/10.1186/s12885-022-09205-z. DOI: 10.1186/s12885-022-09205-z.
[26]
Pesapane F, Patella F, Fumarola EM, et al. Intravoxel incoherent motion (IVIM) diffusion weighted imaging (DWI) in the periferic prostate cancer detection and stratification[J/OL]. Med Oncol, 2017, 34(3) [2022-03-19]. https://link.springer.com/article/10.1007/s12032-017-0892-7. DOI: 10.1007/s12032-017-0892-7.
[27]
Husseini JS, Amorim BJ, Torrado-Carvajal A, et al. An international expert opinion statement on the utility of PET/MR for imaging of skeletal metastases[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1522-1537. DOI: 10.1007/s00259-021-05198-2.
[28]
Alçın G, Şanlı Y, Yeğen G, et al. The impact of primary tumor and locoregional metastatic lymph node SUVmax on predicting survival in patients with rectal cancer[J]. Mol Imaging Radionucl Ther, 2020, 29(2): 65-71. DOI: 10.4274/mirt.galenos.2020.40316.
[29]
Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2014, 16(3): 441-448. DOI: 10.1093/neuonc/not158.
[30]
Boellaard R, Krak NC, Hoekstra OS, et al. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study[J]. J Nucl Med, 2004, 45(9): 1519-1527.
[31]
Chen YF, He W, Liu JY. Comparison of stretched-exponential model and mono-exponential model DWI in differentiation of prostate cancer and benign prostatic hyperplasia[J]. Chin J Magn Reson Imaging, 2019, 10(3): 206-211. DOI: 10.12015/issn.1674-8034.2019.03.009.
[32]
Wang F, Wu LM, Hua XL, et al. Intravoxel incoherent motion diffusion-weighted imaging in assessing bladder cancer invasiveness and cell proliferation[J]. J Magn Reson Imaging, 2018, 47(4): 1054-1060. DOI: 10.1002/jmri.25839.

PREV Preliminary study of synthetic MRI combined with three-dimensional arterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma
NEXT Prediction of lymph node metastasis of pancreatic ductal adenocarcinoma based on radiomics model of T1WI arterial phase
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn