Share:
Share this content in WeChat
X
Clinical Article
Preliminary study of synthetic MRI combined with three-dimensional arterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma
LÜ Ruirui  YANG Zhihua  GE Xin  WANG Minglei  HUANG Xueying  LIU Shan  MA Wenfu  WANG Xiaodong 

Cite this article as: Lü RR, Yang ZH, Ge X, et al. Preliminary study of synthetic MRI combined with three-dimensional arterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma[J]. Chin J Magn Reson Imaging, 2022, 13(8): 19-23, 35. DOI:10.12015/issn.1674-8034.2022.08.004.


[Abstract] Objective To evaluate the value of synthetic MRI (synthetic MRI, syMRI) combined with three-dimensional arterial spin labeling imaging (3D-ASL) in differentiating recurrence and pseudoprogression of glioma.Materials and Methods Thirty-eight patient cases with surgical pathologically confirmed glioma and abnormal enhancing foci after postoperative adjuvant radiotherapy at the General Hospital of Ningxia Medical University from July 2020 to March 2022 were collected. The enrolled cases were divided into recurrence group (22 cases) and pseudoprogression group (16 cases) according to the Modified Criteria for Radiographic Response Assessment in Glioblastoma (mRANO). All patients underwent 3D-ASL and syMRI serial scans. The cerebral blood flow (CBF) value of abnormal enhancement area and post-enhancement T1 value (T1-Gd) and T2 value (T2-Gd) were measured. Independent sample t test or Mann-Whitney U test was used to compare the differences of parameters between recurrence and pseudoprogression group. Receiver operating characteristic (ROC) curve was used to analyze the diagnostic efficacy of T1-Gd, CBF and the combination.Results T1-Gd in recurrence group was lower than T1-Gd in pseudoprogression group, and the difference was statistically significant (P<0.001). The difference between the two groups in T2-Gd was not statistically significant (P>0.05). The CBF value in recurrence group was higher than that in pseudoprogression group, and the difference was statistically significant (P<0.001). The results of ROC curve analysis showed the area under the curve (AUC) was 0.882 and 0.916 for T1-Gd and CBF values, and the AUC was 0.951 for T1-Gd combined with CBF values.Conclusions Synthetic MRI combined with 3D-ASL is helpful to non-invasively distinguish the recurrence and pseudoprogression of glioma, and its diagnostic efficiency is better than that of single MR parameter.
[Keywords] glioma;recurrence;pseudoprogression;synthetic magnetic resonance imaging;three-dimensional arterial spin labeling imaging;diagnosis

LÜ Ruirui1   YANG Zhihua2   GE Xin1   WANG Minglei3   HUANG Xueying3   LIU Shan3   MA Wenfu1   WANG Xiaodong3*  

1 School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China

2 Department of Radiotherapy, Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, China

3 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

Wang XD, E-mail: xdw80@yeah.net

Conflicts of interest   None.

Received  2022-05-13
Accepted  2022-08-05
DOI: 10.12015/issn.1674-8034.2022.08.004
Cite this article as: Lü RR, Yang ZH, Ge X, et al. Preliminary study of synthetic MRI combined with three-dimensional arterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma[J]. Chin J Magn Reson Imaging, 2022, 13(8): 19-23, 35.DOI:10.12015/issn.1674-8034.2022.08.004

[1]
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[2]
Strauss SB, Meng A, Ebani EJ, et al. Imaging Glioblastoma Posttreatment[J]. Radiol Clin North Am, 2019, 57(6): 1199-1216. DOI: 10.1016/j.rcl.2019.07.003.
[3]
Richter V, Klose U, Bender B, et al. Dynamic Susceptibility Perfusion Imaging for Differentiating Progressive Disease from Pseudoprogression in Diffuse Glioma Molecular Subtypes[J/OL]. J Clin Med, 2021, 10(4) [2022-05-13]. https://www.mdpi.com/2077-0383/10/4/598. DOI: 10.3390/jcm10040598.
[4]
Wu X, Liang X, Wang X, et al. Differentiating high-grade glioma recurrence from pseudoprogression: Comparing diffusion kurtosis imaging and diffusion tensor imaging[J/OL]. Eur J of Radiol, 2021, 135 [2022-05-13]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X20306355. DOI: 10.1016/j.ejrad.2020.109445.
[5]
Pirkl CM, Nunez-Gonzalez L, Kofler F, et al. Accelerated 3D whole-brain T1, T2, and proton density mapping: feasibility for clinical glioma MR imaging[J]. Neuroradiology, 2021, 63(11): 1831-1851. DOI: 10.1007/s00234-021-02703-0.
[6]
Ji S, Yang D, Lee J, et al. Synthetic MRI: Technologies and Applications in Neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[7]
Matsuda M, Tsuda T, Ebihara R, et al. Triple-negative breast cancer on contrast-enhanced MRI and synthetic MRI: A comparison with non-triple-negative breast carcinoma[J/OL]. Eur J of Radiol, 2021, 142 [2022-05-13]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X21003193. DOI: 10.1016/j.ejrad.2021.109838.
[8]
Burrage MK, Shanmuganathan M, Zhang Q, et al. Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods[J/OL]. Sci Rep, 2021, 11 [2022-05-13]. https://www.nature.com/articles/s41598-021-92923-4. DOI: 10.1038/s41598-021-92923-4.
[9]
Cui Y, Han S, Liu M, et al. Diagnosis and Grading of Prostate Cancer by Relaxation Maps From Synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2): 552-564. DOI: 10.1002/jmri.27075.
[10]
Zhang N, Lv Y, Liu Y, et al. T2 mapping in the quantitative evaluation of articular cartilage changes in children with hemophilia: A pilot study[J]. Pediatr Investig, 2018, 2(4): 242-247. DOI: 10.1002/ped4.12099.
[11]
Manning P, Daghighi S, Rajaratnam MK, et al. Differentiation of progressive disease from pseudoprogression using 3D PCASL and DSC perfusion MRI in patients with glioblastoma[J]. J Neurooncol, 2020, 147(3): 681-690. DOI: 10.1007/s11060-020-03475-y.
[12]
Ellingson BM, Wen PY, Cloughesy TF. Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials[J]. Neurotherapeutics, 2017, 14(2): 307-320. DOI: 10.1007/s13311-016-0507-6.
[13]
Park JE, Eun D, Kim HS, et al. Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type[J/OL]. Sci Rep, 2021, 11 [2022-05-13]. https://www.nature.com/articles/s41598-021-89477-w. DOI:10.1038/s41598-021-89477-w.
[14]
Blystad I, Warntjes JBM, Smedby Ö, et al. Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema[J/OL]. Sci Rep, 2020, 10 [2022-05-13]. https://www.nature.com/articles/s41598-020-75105-6. DOI: 10.1038/s41598-020-75105-6.
[15]
Yan J, Zhang B, Zhang S, et al. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients[J/OL]. NPJ Precis Oncol, 2021, 5 [2022-05-13]. https://www.nature.com/articles/s41698-021-00205-z. DOI: 10.1038/s41698-021-00205-z.
[16]
Tanenbaum LN, Tsiouris AJ, Johnson AN, et al. Synthetic MRI for Clinical Neuroimaging: Results of the Magnetic Resonance Image Compilation (MAGiC) Prospective, Multicenter, Multireader Trial[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1103-1110. DOI: 10.3174/ajnr.A5227.
[17]
Suh YH, Kang Y, Baek MJ, et al. T2 relaxation time shortening in the cochlea of patients with sudden sensory neuronal hearing loss: a retrospective study using quantitative synthetic magnetic resonance imaging[J]. Eur Radiol, 2021, 31(9): 6438-6445. DOI: 10.1007/s00330-021-07749-5.
[18]
Sun SY, Li ZL, Nie LS, et al. The value of synthetic MRI combined with diffusion weighted imaging in differential diagnosis of benign and malignant breast lesions[J]. Chin J Radiol, 2021, 55(6): 597-604. DOI: 10.3760/cma.j.cn112149-200717-00927.
[19]
Ge X, Shen Y, Sun SY, et al. The clinical value of synthetic MRI combined with dynamic sensitivity contrast in grading gliomas and prediction of tumor cell proliferative[J]. J Pract Radiol, 2022, 38(5): 10-14. DOI: 10.3969/ji.ssn.1002-1671.2022.05.001.
[20]
Xie JP, Zhang WD, Zhu JY, et al. The clinical value of T1 and T2 values in predicting brain glioma grading and cell proliferation activity[J]. Chin J Magn Reson Imaging, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
[21]
Hattingen E, Muller A, Jurcoane A, et al. Value of quantitative magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients[J]. Oncotarget, 2017, 8(32): 53542-53551. DOI: 10.18632/oncotarget.18612.
[22]
Akbari H, Rathore S, Bakas S, et al. Histopathology‐validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo‐progression in glioblastoma[J]. Cancer, 2020, 126(11): 2625-2636. DOI: 10.1002/cncr.32790.
[23]
Zach L, Guez D, Last D, et al. Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors[J/OL]. PLoS One, 2012, 7(12) [22022-05-13]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052008. DOI: 10.1371/journal.pone.0052008.
[24]
Yu XY, Ren L, Liu JJ, et al. The value of three-dimensional arterial spin labeling in identify in grecurrence and pseudo-progression of high-grade glioma[J]. J Pract Radiol, 2021, 37(2): 196-198. DOI: 10.3969/j.issn.1002-1671.2021.02.006.
[25]
Pan F, Wu X, Su ZZ, et al. The value of 3D-ASL combined with DWI in the differential diagnosis of postoperative recurrence and pseudoprogression of gliomas[J]. J Clin Radiol, 2018, 37(6): 904-908. DOI: 10.13437/j.cnki.jcr.2018.06.003.
[26]
Pellerin A, Khalifé M, Sanson M, et al. Simultaneously acquired PET and ASL imaging biomarkers may be helpful in differentiating progression from pseudo-progression in treated gliomas[J]. Eur Radiol, 2021, 31(10): 7395-7405. DOI: 10.1007/s00330-021-07732-0.
[27]
Pang H, Dang X, Ren Y, et al. 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: Comparison of quantitative perfusion and pathology on accurate spatial location-matched basis[J]. J Magn Reson Imaging, 2019, 50(1): 209-220. DOI: 10.1002/jmri.26562.
[28]
Bao SS, Liu YF, Luo YY, et al. Advances in imaging differentiation of pseudoprogression and recurrence of brain gliomas after treatment[J]. Chin J Magn Reson Imaging, 2021, 12(3): 85-88. DOI: 10.12015/issn.1674-8034.2021.03.020.
[29]
Suh CH, Kim HS, Jung SC, et al. Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma: a systematic review and meta-analysis[J]. Eur Radiol, 2018, 28(6): 2628-2638. DOI: 10.1007/s00330-017-5262-5.
[30]
Li C, Gan Y, Chen H, et al. Advanced multimodal imaging in differentiating glioma recurrence from post-radiotherapy changes[J]. Int Rev Neurobiol, 2020, 151: 281-297. DOI: 10.1016/bs.irn.2020.03.009.

PREV The value of apparent diffusion coefficient value in evaluating the IDH-1 mutation status and tumor cell proliferation activity of lower-grade gliomas
NEXT A comparative study of amide proton transfer weighted imaging and intravoxel incoherent motion imaging in the diagnosis of pathological grade of lung adenocarcinoma and its correlation with SUVmax
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn