Share:
Share this content in WeChat
X
Review
Research progress of focal cortical dysplasia with FLAIR-negative of magnetic resonance imaging
JU Jingtao  CHEN Nan 

Cite this article as: Ju JT, Chen N. Research progress of focal cortical dysplasia with FLAIR-negative of magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2022, 13(7): 164-166, 170. DOI:10.12015/issn.1674-8034.2022.07.033.


[Abstract] Focal cortical dysplasia (FCD) is one of the common causes of drug refractory epilepsy. Type Ⅰ accounts for 38.3% of the FCD lesions, while type Ⅱ accounts for 61.7%. Surgery is an effective way for the treatment of FCD. Preoperative detection and accurate localization of the lesions are important factors affecting the mode of operation and prognosis. At present, the diagnosis of FCD mainly depends on MRI. However, up to 40% of type Ⅱ FCD and 85% of type Ⅰ FCD lesions are negative on conventional MRI, which brings great difficulty to diagnosis and operation. With the development of MRI hardware, software and post-processing technology, the negative detection rate of FCD in conventional MRI is greatly improved (overall diagnostic gain rate 31%). Which is great significance for accurate location of lesions, guiding surgery and reducing postoperative seizures. Therefore, this paper reviews the research progress of improving the detection methods of FCD negative on conventional MRI.
[Keywords] magnetic resonance imaging;focal cortical dysplasia;magnetoencephalography;epilepsy;three-dimensional fluid attenuated inversion recover;double inversion recovery sequences;fluid and white matter suppression sequence;fluid and white matter suppression sequence;three-dimensional edge-enhancing gradient echo sequence;voxel-based morphometry;morphometric analysis program;surface-based morphometry;convolutional neural network

JU Jingtao   CHEN Nan*  

Department of Radiology and Nulear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

Chen N, E-mail: chenzen8057@sina.com

Conflicts of interest   None.

Received  2021-12-12
Accepted  2022-07-05
DOI: 10.12015/issn.1674-8034.2022.07.033
Cite this article as: Ju JT, Chen N. Research progress of focal cortical dysplasia with FLAIR-negative of magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2022, 13(7): 164-166, 170.DOI:10.12015/issn.1674-8034.2022.07.033

[1]
Xue H, Cai LX, Dong S, et al. Clinical characteristics and post-surgical outcomes of focal cortical dysplasia subtypes[J/OL]. J Clin Neurosci, 2016 [2022-1-26]. https://www.jocn-journal.com/article/S0967-5868(15)00360-4/fulltext. DOI: 10.1016/j.jocn.2015.04.022.
[2]
Yao K, Duan ZJ, Zhou J, et al. Surgical histopathologic findings of 232 Chinese children cases with drug-resistant seizures[J/OL]. Brain Behav, 2020 [2022-1-26]. https://onlinelibrary.wiley.com/doi/10.1002/brb3.1565. DOI: 10.1002/brb3.1565.
[3]
Blumcke I, Spreafico R, Haaker G, et al. Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery[J]. N Engl J Med, 2017, 377(17): 1648-1656. DOI: 10.1056/NEJMoa1703784.
[4]
Veersema TJ, Swampillai B, Ferrier CH, et al. Long-term seizure outcome after epilepsy surgery in patients with mild malformation of cortical development and focal cortical dysplasia[J]. Epilepsia Open, 2019, 4(1): 170-175. DOI: 10.1002/epi4.12289.
[5]
Wagstyl K, Whitake K, Raznahan A, et al. Atlas of lesion locations and postsurgical seizure freedom in focal cortical dysplasia: A MELD study[J]. Epilepsia, 2022, 63(1): 61-74. DOI: 10.1111/epi.17130.
[6]
Van Lanen RHGJ, Colon AJ, Wiggins CJ, et al. Ultra-high field magnetic resonance imaging in human epilepsy: A systematic review[J/OL]. Neuroimage Clin, 2021 [2022-1-26]. https://www.sciencedirect.com/science/article/pii/S2213158221000462. DOI: 10.1016/j.nicl.2021.102602.
[7]
Chen C, Xie JJ, Ding F, et al. 7T MRI with post-processing for the presurgical evaluation of pharmacoresistant focal epilepsy[J/OL]. Ther Adv Neurol Disord, 2021 [2022-1-26]. https://journals.sagepub.com/doi/full/10.1177/17562864211021181. DOI: 10.1177/17562864211021181.
[8]
Opheim G, van der Kolk A, Markenroth Bloch K, et al. 7T Epilepsy Task Force Consensus Recommendations on the Use of 7T MRI in Clinical Practice[J]. Neurology, 2021, 96(7): 327-341. DOI: 10.1212/WNL.0000000000011413.
[9]
Bartolini E, Cosottini M, Costagli M, et al. Ultra-High-Field Targeted Imaging of Focal Cortical Dysplasia: The Intracortical Black Line Sign in Type IIb[J]. AJNR Am J Neuroradiol, 2019, 40(12): 2137-2142. DOI: 10.3174/ajnr.A6298.
[10]
Liu T, Liang H, Cui J, et al. Clinical Application of 7T Magnetic Resonance Imaging in Patients with Focal Cortical Dysplasia IIa and Epilepsy[J]. Stereotact Funct Neurosurg, 2021, 99(3): 212-220. DOI: 10.1159/000511152.
[11]
Urushibata Y, Kuribayashi H, Fujimoto K, et al. Advantages of fluid and white matter suppression (FLAWS) with MP2RAGE compared with double inversion recovery turbo spin echo (DIR-TSE) at 7T[J/OL]. Eur J Radiol, 2019 [2022-1-26]. https://www.ejradiology.com/article/S0720-048X(19)30153-6/fulltext. DOI: 10.1016/j.ejrad.2019.04.019.
[12]
Kokkinos V, Kallifatidis A, Kapsalaki EZ, et al. Thin isotropic FLAIR MR images at 1.5T increase the yield of focal cortical dysplasia transmantle sign detection in frontal lobe epilepsy[J/OL]. Epilepsy Res, 2017 [2022-1-26]. https://www.sciencedirect.com/science/article/abs/pii/S0920121116303710?via%3Dihub. DOI: 10.1016/j.eplepsyres.2017.02.018.
[13]
Saini J, Singh A, Kesavadas C, et al. Role of three-dimensional fluid-attenuated inversion recovery (3D FLAIR) and proton density magnetic resonance imaging for the detection and evaluation of lesion extent of focal cortical dysplasia in patients with refractory epilepsy[J]. Acta Radiol, 2010, 51(2): 218-225. DOI: 10.3109/02841850903433805.
[14]
Tschampa HJ, Urbach H, Malter M, et al. Magnetic resonance imaging of focal cortical dysplasia: Comparison of 3D and 2D fluid attenuated inversion recovery sequences at 3T[J/OL]. Epilepsy Res, 2015 [2022-1-26]. https://www.sciencedirect.com/science/article/abs/pii/S0920121115300243?via%3Dihub. DOI: 10.1016/j.eplepsyres.2015.07.004.
[15]
Rugg-Gunn FJ, Boulby PA, Symms MR, et al. Imaging the neocortex in epilepsy with double inversion recovery imaging[J]. Neuroimage, 2006, 31(1): 39-50. DOI: 10.1016/j.neuroimage.2005.11.034.
[16]
Sone D, Sato N, Kimura Y, et al. Quantitative analysis of double inversion recovery and FLAIR signals in temporal lobe epilepsy[J/OL]. Epilepsy Res, 2021 [2022-1-26]. https://www.sciencedirect.com/science/article/abs/pii/S092012112030591X. DOI: 10.1016/j.eplepsyres.2020.106540.
[17]
Park CC, Thongkham DW, Sadigh G, et al. Detection of Cortical and Deep Gray Matter Lesions in Multiple Sclerosis Using DIR and FLAIR at 3T[J]. J Neuroimaging, 2021, 31(2): 408-414. DOI: 10.1111/jon.12822.
[18]
Beheshti I, Sone D, Maikusa N, et al. Accurate lateralization and classification of MRI-negative 18F-FDG-PET-positive temporal lobe epilepsy using double inversion recovery and machine-learning[J/OL]. Comput Biol Med, 2021 [2022-1-26]. https://www.sciencedirect.com/science/article/abs/pii/S0010482521005990. DOI: 10.1016/j.compbiomed.2021.104805.
[19]
Tanner M, Gambarota G, Kober T, et al. Fluid and white matter suppression with the MP2RAGE sequence[J]. J Magn Reson Imaging, 2012, 35(5): 1063-1070. DOI: 10.1002/JMRI.23532.
[20]
Chen X, Qian T, Kober T, et al. Gray-matter-specific MR imaging improves the detection of epileptogenic zones in focal cortical dysplasia: A new sequence called fluid and white matter suppression (FLAWS)[J/OL]. Neuroimage Clin, 2018 [2022-1-26]. https://www.sciencedirect.com/science/article/pii/S2213158218302511?via%3Dihub. DOI: 10.1016/j.nicl.2018.08.010.
[21]
Sun K, Yu T, Yang D, et al. Fluid and White Matter Suppression Imaging and Voxel-Based Morphometric Analysis in Conventional Magnetic Resonance Imaging-Negative Epilepsy[J/OL]. Front Neurol, 2021 [2022-1-26]. https://www.frontiersin.org/articles/10.3389/fneur.2021.651592/full. DOI: 10.3389/fneur.2021.651592.
[22]
Middlebrooks EH, Lin C, Westerhold E, et al. Improved detection of focal cortical dysplasia using a novel 3D imaging sequence: Edge-Enhancing Gradient Echo (3D-EDGE) MRI[J/OL]. Neuroimage Clin, 2020 [2022-1-26]. https://www.sciencedirect.com/science/article/pii/S2213158220302862. DOI: 10.1016/j.nicl.2020.102449.
[23]
Middlebrooks EH, Okromelidze L, Lin C, et al. Edge-enhancing gradient echo with multi-image co-registration and averaging (EDGE-MICRA) for targeting thalamic centromedian and parafascicular nuclei[J]. Neuroradiol J, 2021, 34(6): 667-675. DOI: 10.1177/19714009211021781.
[24]
Wang Y, Zhou Y, Wang H, et al. Voxel-based automated detection of focal cortical dysplasia lesions using diffusion tensor imaging and T2-weighted MRI data[J/OL]. Epilepsy Behav, 2018 [2022-1-26]. https://www.epilepsybehavior.com/article/S1525-5050(18)30084-2/fulltext. DOI: 10.1016/j.yebeh.2018.04.005.
[25]
Lorio S, Adler S, Gunny R, et al. MRI profiling of focal cortical dysplasia using multi-compartment diffusion models[J]. Epilepsia, 2020, 61(3): 433-444. DOI: 10.1111/epi.16451.
[26]
Jin B, Lv Z, Chen W, et al. Perilesional white matter integrity in drug-resistant epilepsy related to focal cortical dysplasia[J/OL]. Seizure, 2021 [2022-1-26]. https://www.seizure-journal.com/article/S1059-1311(21)00258-2/fulltext. DOI: 10.1016/j.seizure.2021.07.027.
[27]
Duez L, Tankisi H, Hansen PO, et al. Electromagnetic source imaging in presurgical workup of patients with epilepsy: A prospective study[J/OL]. Neurology, 2019 [2022-1-26]. https://n.neurology.org/content/92/6/e576. DOI: 10.1212/WNL.0000000000006877.
[28]
Otsubo H, Ogawa H, Pang E, et al. A review of magnetoencephalography use in pediatric epilepsy: an update on best practice[J]. Expert Rev Neurother, 2021, 21(11): 1225-1240. DOI: 10.1080/14737175.2021.1910024.
[29]
Rampp S, Stefan H, Wu X, et al. Magnetoencephalography for epileptic focus localization in a series of 1000 cases[J]. Brain, 2019, 142(10): 3059-3071. DOI: 10.1093/brain/awz231.
[30]
Aydin Ü, Rampp S, Wollbrink A, et al. Zoomed MRI Guided by Combined EEG/MEG Source Analysis: A Multimodal Approach for Optimizing Presurgical Epilepsy Work-up and its Application in a Multi-focal Epilepsy Patient Case Study[J]. Brain Topogr, 2017, 30(4): 417-433. DOI: 10.1007/s10548-017-0568-9.
[31]
Wang ZI, Jones SE, Jaisani Z, et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies[J]. Ann Neurol, 2015, 77(6): 1060-1075. DOI: 10.1002/ana.24407.
[32]
Chen X, Qian T, Maréchal B, et al. Quantitative volume-based morphometry in focal cortical dysplasia: A pilot study for lesion localization at the individual level[J/OL]. Eur J Radiol, 2018 [2022-1-26]. https://www.ejradiology.com/article/S0720-048X(18)30224-9/fulltext. DOI: 10.1016/j.ejrad.2018.06.019.
[33]
Sun K, Ren Z, Yang D, et al. Voxel-based morphometric MRI post-processing and PET/MRI co-registration reveal subtle abnormalities in cingulate epilepsy[J/OL]. Epilepsy Res, 2021 [2022-1-26]. https://www.sciencedirect.com/science/article/pii/S0920121121000218?via%3Dihub.
[34]
Martin P, Winston GP, Bartlett P, et al. Voxel-based magnetic resonance image postprocessing in epilepsy[J]. Epilepsia, 2017, 58(9): 1653-1664. DOI: 10.1111/epi.13851.
[35]
Wagner J, Weber B, Urbach H, et al. Morphometric MRI analysis improves detection of focal cortical dysplasia type II[J]. Brain, 2011, 134(Pt 10): 2844-2854. DOI: 10.1093/brain/awr204.
[36]
Stecher X, Schonstedt V, Manterola C, et al. Morphometric analysis program: Detection of epileptic foci in young children using an adult normative database: Initial experience[J]. Epilepsia Open, 2021, 6(1): 235-238. DOI: 10.1002/epi4.12456.
[37]
David B, Kröll-Seger J, Schuch F, et al. External validation of automated focal cortical dysplasia detection using morphometric analysis[J]. Epilepsia, 2021, 62(4): 1005-1021. DOI: 10.1111/epi.16853.
[38]
Adler S, Wagstyl K, Gunny R, et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy[J/OL]. Neuroimage Clin, 2016 [2022-1-26]. https://www.sciencedirect.com/science/article/pii/S2213158216302674?via%3Dihub. DOI: 10.1016/j.nicl.2016.12.030.
[39]
Jin B, Krishnan B, Adler S, et al. Automated detection of focal cortical dysplasia type Ⅱ with surface-based magnetic resonance imaging postprocessing and machine learning[J]. Epilepsia, 2018, 59(5): 982-992. DOI: 10.1111/epi.14064.
[40]
Ganji Z, Hakak MA, Zamanpour SA, et al. Automatic Detection of Focal Cortical Dysplasia Type Ⅱ in MRI: Is the Application of Surface-Based Morphometry and Machine Learning Promising?[J/OL]. Front Hum Neurosci, 2021 [2022-1-26]. https://www.frontiersin.org/articles/10.3389/fnhum.2021.608285/full. DOI: 10.3389/fnhum.2021.608285.
[41]
Wang H, Ahmed SN, Mandal M. Automated detection of focal cortical dysplasia using a deep convolutional neural network[J/OL]. Comput Med Imaging Graph, 2020 [2022-1-26]. https://www.sciencedirect.com/science/article/abs/pii/S0895611118304610. DOI: 10.1016/j.compmedimag.2019.101662.
[42]
Feng C, Zhao H, Li Y, et al. Automatic localization and segmentation of focal cortical dysplasia in FLAIR-negative patients using a convolutional neural network[J]. J Appl Clin Med Phys, 2020, 21(9): 215-226. DOI: 10.1002/acm2.12985.
[43]
Thomas E, Pawan SJ, Kumar S, et al. Multi-Res-Attention UNet: A CNN Model for the Segmentation of Focal Cortical Dysplasia Lesions from Magnetic Resonance Images[J]. IEEE J Biomed Health Inform, 2021, 25(5): 1724-1734. DOI: 10.1109/JBHI.2020.3024188.

PREV Research status of application of artificial intelligence technology based on magnetic resonance imaging in pituitary adenomas
NEXT Application progress of MRI-T2 mapping in tumor
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn