Share this content in WeChat
Application progress of functional magnetic resonance imaging technology in traumatic brain injury
SUN Linna  WANG Peiyuan 

Cite this article as: Sun LN, Wang PY. Application progress of functional magnetic resonance imaging technology in traumatic brain injury[J]. Chin J Magn Reson Imaging, 2022, 13(7): 156-159. DOI:10.12015/issn.1674-8034.2022.07.031.

[Abstract] A series of complex pathophysiological reactions will occur in the brain tissue after traumatic brain injury (TBI). The usage of current medical diagnostic technology to evaluate this change is of great significance for the diagnosis and prognosis of patients. Functional MRI (fMRI) is currently the most effective examination method for in vivo imaging, and it has a deeper and more extensive application in TBI. fMRI technology clearly observe the changes of brain tissue structure, metabolism and function after TBI, which is particularly important for the early diagnosis, prevention and treatment of patients with TBI. This article reviews and sorts out relevant domestic and foreign literature in recent years, and summarizes the application of MRI technology in TBI.
[Keywords] traumatic brain injury;functional magnetic resonance imaging;imaging technology;diagnosis;treatment

SUN Linna   WANG Peiyuan*  

Department of Medical Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China

Wang PY, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Shandong Province (No. ZR2018MH034).
Received  2022-02-26
Accepted  2022-06-22
DOI: 10.12015/issn.1674-8034.2022.07.031
Cite this article as: Sun LN, Wang PY. Application progress of functional magnetic resonance imaging technology in traumatic brain injury[J]. Chin J Magn Reson Imaging, 2022, 13(7): 156-159. DOI:10.12015/issn.1674-8034.2022.07.031.

Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury[J]. J Neurol, 2019, 266(11): 2878-2889. DOI: 10.1007/s00415-019-09541-4.
Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management[J]. Med Clin North Am, 2020, 104(2): 213-238. DOI: 10.1016/j.mcna.2019.11.001.
Galimberti S, Graziano F, Maas AIR, et al. Effect of frailty on 6-month outcome after traumatic brain injury: a multicentre cohort study with external validation[J]. Lancet Neurol, 2022, 21(2): 153-162. DOI: 10.1016/S1474-4422(21)00374-4.
Sherman JL, Adams LJ, Kutz CF, et al. The Challenge of Managing Patients Suffering from TBI: The Utility of Multiparametric MRI[J]. CNS Spectr, 2021, 26(2): 178-179. DOI: 10.1017/S109285292000293X.
Monsour M, Ebedes D, Borlongan CV. A review of the pathology and treatment of TBI and PTSD[J/OL]. Exp Neurol, 2022, 351 [2022-02-26]. DOI: 10.1016/j.expneurol.2022.114009.
Eastman CL, D'ambrosio R, Ganesh T. Modulating neuroinflammation and oxidative stress to prevent epilepsy and improve outcomes after traumatic brain injury[J/OL]. Neuropharmacology, 2020, 172 [2022-02-26]. DOI: 10.1016/j.neuropharm.2019.107907.
Maegele M, Stuermer EK, Hoeffgen A, et al. Multimodal MR imaging of acute and subacute experimental traumatic brain injury: Time course and correlation with cerebral energy metabolites[J/OL]. Acta Radiol Short Rep, 2015, 4(1) [2022-02-26]. DOI: 10.1177/2047981614555142.
Wei XE, Zhang YZ, Li YH, et al. Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study[J]. J Neurotrauma, 2012, 29(14): 2413-2420. DOI: 10.1089/neu.2010.1510.
Turtzo LC, Luby M, Jikaria N, et al. Cytotoxic edema associated with hemorrhage predicts poor outcome after traumatic brain injury[J]. J Neurotrauma, 2021, 38(22): 3107-3118. DOI: 10.1089/neu.2021.0037.
Ren H, Lu H. Dynamic features of brain edema in rat models of traumatic brain injury[J]. Neuroreport, 2019, 30(9): 605-611. DOI: 10.1097/WNR.0000000000001213.
Tan XG, Sajja V, D'souza MM, et al. A Methodology to Compare Biomechanical Simulations With Clinical Brain Imaging Analysis Utilizing Two Blunt Impact Cases[J/OL]. Front Bioeng Biotechnol, 2021, 9 [2022-02-26]. DOI: 10.3389/fbioe.2021.654677.
Lope-Piedrafita S. Diffusion Tensor Imaging (DTI)[J]. Methods Mol Biol, 2018, 1718: 103-116. DOI: 10.1007/978-1-4939-7531-0_7.
Wallace EJ, Mathias JL, Ward L, et al. Chronic white matter changes detected using diffusion tensor imaging following adult traumatic brain injury and their relationship to cognition[J]. Neuropsychology, 2020, 34(8): 881-893. DOI: 10.1037/neu0000690.
Vakhtin AA, Zhang Y, Wintermark M, et al. White Matter Asymmetry: A Reflection of Pathology in Traumatic Brain Injury[J]. J Neurotrauma, 2020, 37(2): 373-381. DOI: 10.1089/neu.2019.6487.
Soni N, Medeiros R, Alateeq K, et al. Diffusion Tensor Imaging Detects Acute Pathology-Specific Changes in the P301L Tauopathy Mouse Model Following Traumatic Brain Injury[J/OL]. Front Neurosci, 2021, 15 [2022-02-26]. DOI: 10.3389/fnins.2021.611451.
Zhang XF, Zhang MW, Yu ZH, et al. Application of diffusion tensor imaging combined with magnetic resonance spectroscopy in prognostic assessment of comatose patients with traumatic brain injury[J]. Chinese Journal of Medical Physics, 2019, 36(4): 447-452. DOI: 10.3969/j.issn.1005-202X.2019.04.015.
San Martin Molina I, Salo R A, Abdollahzadeh A, et al. In Vivo Diffusion Tensor Imaging in Acute and Subacute Phases of Mild Traumatic Brain Injury in Rats[J/OL]. eNeuro, 2020, 7(3) [2022-02-26]. DOI: 10.1523/ENEURO.0476-19.2020.
Zhang MY, Hong F, Lu F, et al. Application of DTI in white matter injury of premature infants[J]. Jiangsu Med J, 2021, 47(11): 1111-1115, 1076. DOI: 10.19460/j.cnki.0253-3685.2021.11.008.
Muller J, Middleton D, Alizadeh M, et al. Hybrid diffusion imaging reveals altered white matter tract integrity and associations with symptoms and cognitive dysfunction in chronic traumatic brain injury[J/OL]. Neuroimage Clin, 2021, 30 [2022-02-26]. DOI: 10.1016/j.nicl.2021.102681.
Palacios EM, Owen JP, Yuh EL, et al. The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study[J/OL]. Sci Adv, 2020, 6(32) [2022-02-26]. DOI: 10.1126/sciadv.aaz6892.
Mccunn P, Xu X, Moszczynski A, et al. Neurite orientation dispersion and density imaging in a rodent model of acute mild traumatic brain injury[J]. J Neuroimaging, 2021, 31(5): 879-892. DOI: 10.1111/jon.12917.
Muftuler LT, Meier TB, Keith M, et al. Serial Diffusion Kurtosis Magnetic Resonance Imaging Study during Acute, Subacute, and Recovery Periods after Sport-Related Concussion[J]. J Neurotrauma, 2020, 37(19): 2081-2092. DOI: 10.1089/neu.2020.6993.
Zheng T, Yuan Y, Yang H, et al. Evaluating the Therapeutic Effect of Low-Intensity Transcranial Ultrasound on Traumatic Brain Injury With Diffusion Kurtosis Imaging[J]. J Magn Reson Imaging, 2020, 52(2): 520-531. DOI: 10.1002/jmri.27063.
Wang ML, Yu MM, Yang DX, et al. Diffusion Kurtosis Imaging Characterizes Brain Microstructural Changes Associated with Cognitive Impairment in a Rat Model of Chronic Traumatic Brain Injury[J]. Neuroscience, 2018, 392: 180-189. DOI: 10.1016/j.neuroscience.2018.09.030.
Li W, Wang X, Wei X, et al. Susceptibility-weighted and diffusion kurtosis imaging to evaluate encephalomalacia with epilepsy after traumatic brain injury[J]. Ann Clin Transl Neurol, 2018, 5(5): 552-558. DOI: 10.1002/acn3.552.
Wang ML, Wei XE, Yu MM, et al. Cognitive impairment in mild traumatic brain injury: a diffusion kurtosis imaging and volumetric study[J/OL]. Acta Radiol, 2021 [2022-02-26]. DOI: 10.1177/0284185121998317.
Menshchikov P, Ivantsova A, Manzhurtsev A, et al. Separate N-acetyl aspartyl glutamate, N-acetyl aspartate, aspartate, and glutamate quantification after pediatric mild traumatic brain injury in the acute phase[J]. Magn Reson Med, 2020, 84(6): 2918-2931. DOI: 10.1002/mrm.28332.
Eisele A, Hill-Strathy M, Michels L, et al. Magnetic Resonance Spectroscopy following Mild Traumatic Brain Injury: A Systematic Review and Meta-Analysis on the Potential to Detect Posttraumatic Neurodegeneration[J]. Neurodegener Dis, 2020, 20(1): 2-11. DOI: 10.1159/000508098.
Sheth C, Prescot AP, Legarreta M, et al. Increased myoinositol in the anterior cingulate cortex of veterans with a history of traumatic brain injury: a proton magnetic resonance spectroscopy study[J]. J Neurophysiol, 2020, 123(5): 1619-1629. DOI: 10.1152/jn.00765.2019.
Maudsley AA, Govind V, Saigal G, et al. Longitudinal MR Spectroscopy Shows Altered Metabolism in Traumatic Brain Injury[J]. J Neuroimaging, 2017, 27(6): 562-569. DOI: 10.1111/jon.12463.
Lawrence TP, Steel A, Ezra M, et al. MRS and DTI evidence of progressive posterior cingulate cortex and corpus callosum injury in the hyper-acute phase after Traumatic Brain Injury[J]. Brain Inj, 2019, 33(7): 854-868. DOI: 10.1080/02699052.2019.1584332.
Lin JC, Mueller C, Campbell KA, et al. Investigating whole-brain metabolite abnormalities in the chronic stages of moderate or severe traumatic brain injury[J]. PM & R, 2022, 14(4): 472-485. DOI: 10.1002/pmrj.12623.
Eldes T, Beyazal Celiker F, Bilir O, et al. How important is susceptibility-weighted imaging in mild traumatic brain injury?[J]. Ulus Travma Acil Cerrahi Derg, 2020, 26(4): 574-579. DOI: 10.14744/tjtes.2019.35485.
Shangguan JW, Liang JF, Xiao XG, et al. Diagnostic value of magnetic resonance susceptibility weighted imaging and diffusion weighted imaging for early traumatic brain injury[J]. Chin J Pract Med, 2021, 48(4): 75-78. DOI: 10.3760/cma.j.cn115689-20201105-05352.
Bianciardi M, Izzy S, Rosen BR, et al. Location of Subcortical Microbleeds and Recovery of Consciousness After Severe Traumatic Brain Injury[J/OL]. Neurology, 2021, 97(2) [2022-02-26]. DOI: 10.1212/WNL.0000000000012192.
Chen X, Chen Y, Xu Y, et al. Microstructural and Neurochemical Changes in the Rat Brain After Diffuse Axonal Injury[J]. J Magn Reson Imaging, 2019, 49(4): 1069-1077. DOI: 10.1002/jmri.26258.
Zhang H, Wang W, Jiang S, et al. Amide proton transfer-weighted MRI detection of traumatic brain injury in rats[J]. J Cereb Blood Flow Metab, 2017, 37(10): 3422-3432. DOI: 10.1177/0271678X17690165.
Mao Y, Zhuang Z, Chen Y, et al. Imaging of glutamate in acute traumatic brain injury using chemical exchange saturation transfer[J]. Quant Imaging Med Surg, 2019, 9(10): 1652-1663. DOI: 10.21037/qims.2019.09.08.
Hanalioglu S, Hidayatov T, Isikay I, et al. Early Cerebral Blood Flow Changes, Cerebrovascular Reactivity and Cortical Spreading Depolarizations in Experimental Mild Traumatic Brain Injury Model[J]. Turk Neurosurg, 2022, 32(3): 488-499. DOI: 10.5137/1019-5149.JTN.37742-22.1.
Muscas G, Van Niftrik CHB, Sebok M, et al. Intraoperative BOLD-fMRI Cerebrovascular Reactivity Assessment[J]. Acta Neurochir Suppl, 2021, 132: 139-143. DOI: 10.1007/978-3-030-63453-7_20.
Churchill NW, Hutchison MG, Graham SJ, et al. Evaluating Cerebrovascular Reactivity during the Early Symptomatic Phase of Sport Concussion[J]. J Neurotrauma, 2019, 36(10): 1518-1525. DOI: 10.1089/neu.2018.6024.
Amyot F, Kenney K, Spessert E, et al. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS[J/OL]. Neuroimage Clin, 2020, 25 [2022-02-26]. DOI: 10.1016/j.nicl.2019.102086.

PREV Progress of three-dimensional high resolution MRI technology in the diagnosis of trigeminal neuralgia
NEXT Research status of application of artificial intelligence technology based on magnetic resonance imaging in pituitary adenomas

Tel & Fax: +8610-67113815    E-mail: