Share this content in WeChat
Progress of three-dimensional high resolution MRI technology in the diagnosis of trigeminal neuralgia
WANG Zairan  LU Pengchao  LIU Xiuying  ZHAO Zongmao 

Cite this article as: Wang ZR, Lu PC, Liu XY, et al. Progress of three-dimensional high resolution MRI technology in the diagnosis of trigeminal neuralgia[J]. Chin J Magn Reson Imaging, 2022, 13(7): 152-155. DOI:10.12015/issn.1674-8034.2022.07.030.

[Abstract] Trigeminal neuralgia (TN) is a common disease in the elderly. It is a unique form of neuropathic pain, seriously affect the life and work of patient. Neurovascular compression/contact (NVC) is the main cause of TN. Preoperative identification of NVC has an impact on the determination of appropriate treatment for TN. Currently, microvascular decompression (MVD) is considered the most effective treatment for patients with TN. The key to the success of MVD is closely related to the accuracy of responsibility vessel determination. The conventional MRI sequences can not clearly depict the relationship between the trigeminal nerve and adjacent vessels. However, with the rapid development and the popularity of high resolution (HR) MRI technology, HR MRI sequences, such as three-dimensional (3D) steady-state sequences, can be used to assess most of the characteristics of NVC in TN patients. At the same time, multimodal imaging combined with HR MRI sequences, hemodynamic assessment and diffusion tensor imaging can improve the accuracy of diagnosis, which provides a powerful guarantee for the clinical development of MVD. This paper reviews the progress of 3D HR MRI technology in TN diagnosis.
[Keywords] trigeminal neuralgia;neurovascular compression;microvascular decompression;magnetic resonance imaging;three-dimensional high resolution magnetic resonance imaging

WANG Zairan1   LU Pengchao2   LIU Xiuying2   ZHAO Zongmao1*  

1 Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China

2 Department of Medical Imaging, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China

Zhao ZM, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS The Key Subject of Higher Education Scientific Research of Hebei Higher Education Association (No. GJXHZ2019-31).
Received  2021-12-13
Accepted  2022-06-22
DOI: 10.12015/issn.1674-8034.2022.07.030
Cite this article as: Wang ZR, Lu PC, Liu XY, et al. Progress of three-dimensional high resolution MRI technology in the diagnosis of trigeminal neuralgia[J]. Chin J Magn Reson Imaging, 2022, 13(7): 152-155. DOI:10.12015/issn.1674-8034.2022.07.030.

Headache classification committee of the international headache society (IHS) the international classification of headache disorders, 3rd edition[J]. Cephalalgia, 2018, 38(1): 1-211. DOI: 10.1177/0333102417738202.
Maarbjerg S, Benoliel R. The changing face of trigeminal neuralgia-A narrative review[J]. Headache, 2021, 61(6): 817-837. DOI: 10.1111/head.14144.
Holste K, Chan AY, Rolston JD, et al. Pain outcomes following microvascular decompression for drug-resistant trigeminal neuralgia: a systematic review and meta-analysis[J]. Neurosurgery, 2020, 86: 182-190. DOI: 10.1093/neuros/nyz075.
Yang D, Shen J, Xia X, et al. Preoperative evaluation of neurovascular relationship in trigeminal neuralgia by three-dimensional fast low angle shot (3D-FLASH) and three-dimensional constructive interference in steady-state (3D-CISS) MRI sequence[J/OL]. Br J Radiol, 2018, 91(1085) [2021-12-13]. DOI: 10.1259/bjr.20170557.
Alwardian M, Chrysikos D, Samolis A, et al. Trigeminal neuralgia and potential correlations with anatomical variations of the trigeminal nerve[J]. Acta Med Acad, 2021, 50(2): 292-299. DOI: 10.5644/ama2006-124.344.
Gambeta E, Chichorro JG, Zamponi GW. Trigeminal neuralgia: an overview from pathophysiology to pharmacological treatments[J/OL]. Mol Pain, 2020, 16 [2021-12-13]. DOI: 10.1177/1744806920901890.
Hitchon PW, Holland M, Noeller J, et al. Options in treating trigeminal neuralgia: experience with 195 patients[J]. Clin Neurol Neurosurg, 2016, 149: 166-170. DOI: 10.1016/j.clineuro.2016.08.016.
Sandwell S, Montoya S, Towner JE, et al. Anatomical study of percutaneous trigeminal compressive balloon positioning on merged 3-D rotational X-ray and preprocedural magnetic resonance imaging[J]. Stereotact Funct Neurosurg, 2018, 96: 182-189. DOI: 10.1159/000489947.
Tuleasca C, Régis J, Sahgal A, et al. Stereotactic radiosurgery for trigeminal neuralgia: a systematic review[J]. J Neurosurg, 2018, 130(3): 733-757. DOI: 10.3171/2017.9.JNS17545.
Bick SK, Huie D, Sneh G, et al. Older patients have better pain outcomes following microvascular decompression for trigeminal neuralgia[J]. Neurosurgery, 2019, 84(1): 116-122. DOI: 10.1093/neuros/nyy011.
Bendtsen L, Zakrzewska JM, Abbott J, et al. European Academy of Neurology guideline on trigeminal neuralgia[J]. Eur J Neurol, 2019, 26(6): 831-849. DOI: 10.1111/ene.13950.
Patel SK, Liu JK. Overview and history of trigeminal neuralgia[J]. Neurosurg Clin N Am, 2016, 27(3): 265-276. DOI: 10.1016/
Li Y, Yang L, Ni J, et al. Microvascular decompression and radiofrequency for the treatment of trigeminal neuralgia: a meta-analysis[J]. J Pain Res, 2019, 12: 1937-1945. DOI: 10.2147/JPR.S203141.
Tomasello F, Germanò A, Lavano A, et al. A novel technical refinement of microvascular decompression: pain relief and complication rate in a consecutive series of patients with trigeminal neuralgia[J]. Oper Neurosurg (Hagerstown), 2020, 19(3): 226-233. DOI: 10.1093/ons/opaa044.
Ibarra AMC, Biasotto-Gonzalez DA, Kohatsu EYI, et al. Photobiomodulation on trigeminal neuralgia: systematic review[J]. Lasers Med Sci, 2021, 36(4): 715-722. DOI: 10.1007/s10103-020-03198-6.
Liu MX, Zhong J, Xia L, et al. Treatment of trigeminal neuralgia with "microvascular decompression plus" technique[J/OL]. J Neurol Surg B Skull Base, 2021, 82(Suppl 3) [2021-12-13]. DOI: 10.1055/s-0040-1710520.
Sindou M, Brinzeu A. Topography of the pain in classical trigeminal neuralgia: insights into somatotopic organization[J]. Brain, 2020, 143(2): 531-540. DOI: 10.1093/brain/awz407.
Haller S, Etienne L, Kövari E, et al. Imaging of neurovascular compression syndromes: trigeminal neuralgia, hemifacial spasm, vestibular paroxysmia, and glossopharyngeal neuralgia[J]. AJNR Am J Neuroradiol, 2016, 37(8): 1384-1392. DOI: 10.3174/ajnr.A4683.
Greve T, Tonn JC, Mehrkens JH. Microvascular decompression for trigeminal neuralgia in the elderly: efficacy and safety[J]. J Neurol, 2021, 268(2): 532-540. DOI: 10.1007/s00415-020-10187-w.
Herta J, Schmied T, Loidl TB, et al. Microvascular decompression in trigeminal neuralgia: predictors of pain relief, complication avoidance, and lessons learned[J]. Acta Neurochir (Wien), 2021, 163(12): 3321-3336. DOI: 10.1007/s00701-021-05028-2.
Go KO, Hwang K, Han JH. Surgical nuances to reduce and manage cerebrospinal fluid leaks after microvascular decompression[J]. J Clin Med, 2020, 9(4): 902. DOI: 10.3390/jcm9040902.
Blitz AM, Northcutt B, Shin J, et al. Contrast-enhanced CISS imaging for evaluation of neurovascular compression in trigeminal neuralgia: improved correlation with symptoms and prediction of surgical outcomes[J]. AJNR Am J Neuroradiol, 2018, 39(9): 1724-1732. DOI: 10.3174/ajnr.A5743.
Lambru G, Rantell K, O'Connor E, et al. Trigeminal neurovascular contact in SUNCT and SUNA: a cross-sectional magnetic resonance study[J]. Brain, 2020, 143(12): 3619-3628. DOI: 10.1093/brain/awaa331.
Chung MS, Yim Y, Sung JK, et al. CS-VIBE accelerates cranial nerve MR imaging for the diagnosis of facial neuritis: comparison of the diagnostic performance of post-contrast MPRAGE and CS-VIBE[J]. Eur Radiol, 2022, 32(1): 223-233. DOI: 10.1007/s00330-021-08102-6.
Mi L, Song YL, Chen H, et al. Preliminary study of vascular compression and morphological characteristics of trigeminal nerve bridge forebay section by 3D-TOF MRA combined with 3D-FIESTA[J]. J Pract Radiol, 2018, 34(8): 1160-1163, 1171. DOI: 10.3969/j.issn.1002-1671.2018.08.002.
Moon HC, You ST, Baek HM, et al. 7.0 Tesla MRI tractography in patients with trigeminal neuralgia[J]. Magn Reson Imaging, 2018, 54: 265-270. DOI: 10.1016/j.mri.2017.12.033.
Danyluk H, Sankar T, Beaulieu C. High spatial resolution nerve-specific DTI protocol outperforms whole-brain DTI protocol for imaging the trigeminal nerve in healthy individuals[J/OL]. NMR Biomed, 2021, 34(2) [2021-12-13]. DOI: 10.1002/nbm.4427.
Shang HB, Zhao WG, Zhu J, et al. Predicting the outcome of microvascular decompression for trigeminal neuralgia using magnetic resonance tomographic angiography[J]. J Neuroimaging, 2010, 20(4): 345-349. DOI: 10.1111/j.1552-6569.2009.00378.x.
Besta R, Shankar YU, Kumar A, et al. MRI 3D CISS- a novel imaging modality in diagnosing trigeminal neuralgia - a review[J]. J Clin Diagn Res, 2016, 10(3): ZE01-ZE03. DOI: 10.7860/JCDR/2016/14011.7348.
Hitchon PW, Bathla G, Moritani T, et al. Predictability of vascular conflict by MRI in trigeminal neuralgia[J]. Clin Neurol Neurosurg, 2019, 182: 171-176. DOI: 10.1016/j.clineuro.2019.05.005.
Chávez GD, De Salles AA, Solberg TD, et al. Three-dimensional fast imaging employing steady-state acquisition magnetic resonance imaging for stereotactic radiosurgery of trigeminal neuralgia[J/OL]. Neurosurgery, 2005, 56(3) [2021-12-13]. DOI: 10.1227/01.neu.0000154709.44776.50.
Donahue JH, Ornan DA, Mukherjee S. Imaging of Vascular Compression Syndromes[J]. Radiol Clin North Am, 2017, 55(1): 123-138. DOI: 10.1016/j.rcl.2016.08.001.
Han KW, Zhang DF, Chen JG, et al. Presurgical visualization of the neurovascular relationship in trigeminal neuralgia with 3D modeling using free Slicer software[J]. Acta Neurochir (Wien), 2016, 158(11): 2195-2201. DOI: 10.1007/s00701-016-2936-8.
Wei SC, Yu R, Meng Q, et al. Efficacy of microvascular decompression in patients with trigeminal neuralgia with negative neurovascular relationship shown by magnetic resonance tomography[J/OL]. Clin Neurol Neurosurg, 2020, 197 [2021-12-13]. DOI: 10.1016/j.clineuro.2020.106063.
Gamaleldin OA, Donia MM, Elsebaie NA, et al. Role of fused three-dimensional time-of-flight magnetic resonance angiography and 3-dimensional T2-weighted imaging sequences in neurovascular compression[J/OL]. World Neurosurg, 2020, 133 [2021-12-13]. DOI: 10.1016/j.wneu.2019.08.190.
Pham HD, Dang TH, Duong TK, et al. Predictability of fused 3D-T2-SPACE and 3D-TOF-MRA images in identifying conflict in trigeminal neuralgia[J]. J Pain Res, 2021, 14: 3421-3428. DOI: 10.2147/JPR.S331054.
Zhao Y, Chen J, Jiang R, et al. MRI features of responsible contacts in vascular compressive trigeminal neuralgia and prediction modeling[J/OL]. Acta Radiol, 2021 [2021-12-13]. DOI: 10.1177/0284185120983971.
Lorenzoni J, David P, Levivier M. Patterns of neurovascular compression in patients with classic trigeminal neuralgia: a high-resolution MRI-based study[J]. Eur J Radiol, 2012, 81(8): 1851-1857. DOI: 10.1016/j.ejrad.2009.09.017.
Yao S, Zhang J, Zhao Y, et al. Multimodal image-based virtual reality presurgical simulation and evaluation for trigeminal neuralgia and hemifacial spasm[J/OL]. World Neurosurg, 2018, 113 [2021-12-13]. DOI: 10.1016/j.wneu.2018.02.069.
Müller S, Khadhraoui E, Khanafer A, et al. Differentiation of arterial and venous neurovascular conflicts estimates the clinical outcome after microvascular decompression in trigeminal neuralgia[J]. BMC Neurol, 2020, 20(1): 279. DOI: 10.1186/s12883-020-01860-8.
Liao Z, Zou L, Peng W, et al. Improving the accuracy of pre-operative evaluation of neurovascular conflict in trigeminal neuralgia using magnetic resonance subtraction[J]. Neuroradiology, 2021, 63(3): 295-303. DOI: 10.1007/s00234-020-02624-4.
Lin W, Zhu WP, Chen YL, et al. Large-diameter compression arteries as a possible facilitating factor for trigeminal neuralgia: analysis of axial and radial diffusivity[J]. Acta Neurochir (Wien), 2016, 158(3): 521-526. DOI: 10.1007/s00701-015-2673-4.
Yamada K, Tanaka Y, Sumita K, et al. Computational fluid dynamics analysis of the offending artery at sites of neurovascular compression in trigeminal neuralgia using preoperative MRI data[J]. Neurol Med Chir (Tokyo), 2019, 59(11): 415-422. DOI: 10.2176/nmc.oa.2019-0101.
Alper J, Shrivastava RK, Balchandani P. Is there a magnetic resonance imaging-discernible cause for trigeminal neuralgia? a structured review[J]. World Neurosurg, 2017, 98: 89-97. DOI: 10.1016/j.wneu.2016.10.104.
Yeh FC, Verstynen TD, Wang Y, et al. Deterministic diffusion fiber tracking improved by quantitative anisotropy[J/OL]. PLoS One, 2013, 8(11) [2021-12-13]. DOI: 10.1371/journal.pone.0080713.
Chen F, Chen L, Li W, et al. Pre-operative declining proportion of fractional anisotropy of trigeminal nerve is correlated with the outcome of micro-vascular decompression surgery[J]. BMC Neurol, 2016, 16: 106. DOI: 10.1186/s12883-016-0620-5.
Jin Z, Bao Y, Wang Y, et al. Differences between generalized Q-sampling imaging and diffusion tensor imaging in visualization of crossing neural fibers in the brain[J]. Surg Radiol Anat, 2019, 41(9): 1019-1028. DOI: 10.1007/s00276-019-02264-1.
Varela-Mattatall GE, Koch A, Stirnberg R, et al. Comparison of q-space reconstruction methods for undersampled diffusion spectrum imaging data[J]. Magn Reson Med Sci, 2020, 19(2): 108-118. DOI: 10.2463/
Hodgson K, Adluru G, Richards LG, et al. Predicting motor outcomes in stroke patients using diffusion spectrum MRI microstructural measures[J]. Front Neurol, 2019, 10: 72. DOI: 10.3389/fneur.2019.00072.
Leng B, Han S, Bao Y, et al. The uncinate fasciculus as observed using diffusion spectrum imaging in the human brain[J]. Neuroradiology, 2016, 58(6): 595-606. DOI: 10.1007/s00234-016-1650-9.
Luo SP, Chen FF, Zhang HW, et al. Trigeminal nerve white matter fiber abnormalities in primary trigeminal neuralgia: a diffusion spectrum imaging study[J/OL]. Front Neurol, 2022, 12 [2021-12-13]. DOI: 10.3389/fneur.2021.798969.

PREV Research progress of magnetic resonance imaging in predicting the prognosis of acute ischemic stroke
NEXT Application progress of functional magnetic resonance imaging technology in traumatic brain injury

Tel & Fax: +8610-67113815    E-mail: