Share this content in WeChat
Advances of brain network and endophenotypes in fMRI in juvenile myoclonic epilepsy
ZHANG Xin  REN Jiechuan  BAO Junxiang 

Cite this article as: Zhang X, Ren JC, Bao JX. Advances of brain network and endophenotypes in fMRI in juvenile myoclonic epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(7): 143-146, 155. DOI:10.12015/issn.1674-8034.2022.07.028.

[Abstract] Juvenile myoclonic epilepsy (JME) is a lifelong disorder that begins in adolescence. Cognitive decline and abnormal network connectivity are thought to be responsible for cognitive dysfunction in JME patients. Functional magnetic resonance imaging (fMRI) studies have achieved remarkable results in revealing abnormalities of brain functional network and cognitive dysfunction in JME patients, and have significant potentialities to elucidate the physiopathology of JME. Functional network connectivity studies elucidate alterations in brain network of JME patients and help understand the neural mechanisms of JME. Non-traditional electroencephalography-functional magnetic resonance imaging (EEG-fMRI) studies blood oxygen level dependent (BOLD) activities associated dynamic network of EEG, sheding new light on the neural mechanisms of JME. Endophenotypes studies of JME in fMRI help provide a link between clinical features and underlying genetic characteristics. In this article, we will review the advance of brain network, BOLD activities associated dynamic network of EEG and endophenotypes of JME in fMRI.
[Keywords] functional magnetic resonance imaging;juvenile myoclonic epilepsy;brain functional network;endophenotype

ZHANG Xin1   REN Jiechuan2   BAO Junxiang1*  

1 Department of Aerospace Hygiene, Air Force Medical University, Xi'an 710032, China

2 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

Bao JX, E-mail:

Conflicts of interest   None.

Received  2021-12-26
Accepted  2022-06-22
DOI: 10.12015/issn.1674-8034.2022.07.028
Cite this article as: Zhang X, Ren JC, Bao JX. Advances of brain network and endophenotypes in fMRI in juvenile myoclonic epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(7): 143-146, 155.DOI:10.12015/issn.1674-8034.2022.07.028

Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 512-521. DOI: 10.1111/epi.13709.
Lee HJ, Lee DA, Shin KJ, et al. Glymphatic system dysfunction in patients with juvenile myoclonic epilepsy[J]. J Neurol, 2022, 269(4): 2133-2139. DOI: 10.1007/s00415-021-10799-w.
Asadi-Pooya AA, Rostamihosseinkhani M, Farazdaghi M. Seizure and social outcomes in patients with juvenile myoclonic epilepsy (JME)[J]. Seizure, 2022, 97: 15-19. DOI: 10.1016/j.seizure.2022.03.002.
Cerulli Irelli E, Morano A, Orlando B, et al. Seizure outcome trajectories in a well‐defined cohort of newly diagnosed juvenile myoclonic epilepsy patients[J]. Acta Neurol Scand, 2022, 145(3): 314-321. DOI: 10.1111/ane.13556.
Gilsoul M, Grisar T, Delgado-Escueta AV, et al. Subtle brain developmental abnormalities in the pathogenesis of juvenile myoclonic epilepsy[J]. Front Cell Neurosci, 2019, 13(433): 1-15. DOI: 10.3389/fncel.2019.00433.
Komatsubara T, Kobayashi Y, Hiraiwa A, et al. Recurrence rates and risk factors for seizure recurrence following antiseizure medication withdrawal in adolescent patients with genetic generalized epilepsy[J]. Epilepsia Open, 2022, 7(2): 332-343. DOI: 10.1002/epi4.12603.
Kim JH. Grey and white matter alterations in juvenile myoclonic epilepsy: a comprehensive review[J]. Epilepsy Res, 2017, 7(2): 77-88. DOI: 10.14581/jer.17013.
Chawla T, Chaudhry N, Puri V. Cognitive dysfunction in Juvenile Myoclonic Epilepsy (JME)-A tertiary care center study[J]. Ann Indian Acad Neurol, 2021, 24(1): 40-50. DOI: 10.4103/aian.AIAN_663_19.
Wolf P, Yacubian EMT, Avanzini G, et al. Juvenile myoclonicepilepsy: a system disorder of the brain[J]. Epilepsy Res, 2015, 114(8): 2-12. DOI: 10.1016/j.eplepsyres.2015.04.008.
Lee DA, Ko J, Lee HJ, et al. Alterations of the intrinsic amygdala-hippocampal network in juvenile myoclonic epilepsy[J]. Brain Behav, 2021, 11(8): 1-8. DOI: 10.1002/brb3.2274.
Garcia-Ramos C, Struck AF, Cook C, et al. Network topology of the cognitive phenotypes of temporal lobe epilepsy[J]. Cortex, 2021, 141(8): 55-65. DOI: 10.1016/j.cortex.2021.03.031.
Liu G, Zheng W, Liu H, et al. Aberrant dynamic structure-function relationship of rich‐club organization in treatment-naïve newly diagnosed juvenile myoclonic epilepsy[J]. Hum Brain Mapp, 2022, 4(3): 1-13. DOI: 10.1002/hbm.25873.
Dubbioso R, Striano P, Tomasevic L, et al. Abnormal sensorimotor cortex and thalamo-cortical networks in familial adult myoclonic epilepsy type 2: pathophysiology and diagnostic implications[J]. Brain Commun, 2022, 4(1): 1-15. DOI: 10.1093/braincomms/fcac037.
Ke M, Li H, Liu G. The Local Topological Reconfiguration in the Brain Network After Targeted Hub Dysfunction Attacks in Patients With Juvenile Myoclonic Epilepsy[J]. Front Neurosci, 2022, 16(4): 1-12. DOI: 10.3389/fnins.2022.864040.
Lee HJ, Park KM. Structural and functional connectivity in newly diagnosed juvenile myoclonic epilepsy[J]. Acta Neurol Scand, 2019, 139(5): 469-475. DOI: 10.1111/ane.13079.
Wang Y, Berglund IS, Uppman M, et al. Juvenile myoclonic epilepsy has hyper dynamic functional connectivity in the dorsolateral frontal cortex[J]. Neuroimage Clin, 2019, 21(101604): 1-12. DOI: 10.1016/j.nicl.2018.11.014.
Kim JH, Kim JB, Suh S. Alteration of cerebello-thalamocortical spontaneous low‐frequency oscillations in juvenile myoclonic epilepsy[J]. Acta Neurol Scand, 2019, 140(4): 252-258. DOI: 10.1111/ane.13138.
Gupta L, Janssens R, Vlooswijk MCG, et al. Towards prognostic biomarkers from BOLD fluctuations to differentiate a first epileptic seizure from new-onset epilepsy[J]. Epilepsia, 2017, 58(3): 476-483. DOI: 10.1111/epi.13658.
Gama AP, Taura M, Alonso NB, et al. Impulsiveness, personality traits and executive functioning in patients with juvenile myoclonic epilepsy[J]. Seizure, 2020, 82: 125-132. DOI: 10.1016/j.seizure.2020.09.029.
Taura M, Gama AP, Sousa AVM, et al. Dysfunctional personality beliefs and executive performance in patients with juvenile myoclonic epilepsy[J]. Epilepsy Behav, 2020, 105(4): 1-6. DOI: 10.1016/j.yebeh.2020.106958.
Zhong C, Liu R, Luo C, et al. Altered structural and functional connectivity of juvenile myoclonic epilepsy: an fMRI study[J]. Neural Plast, 2018, 2018: 1-12. DOI: 10.1155/2018/7392187.
Jiang S, Luo C, Gong J, et al. Aberrant thalamocortical connectivity in juvenile myoclonic epilepsy[J/OL]. Int J Neural Syst, 2018, 28(1) [2021-12-26]. DOI: 10.1142/S0129065717500344.
Ke M, Sun PF, Liu GY. Granger Causality Analysis on Juvenile Myoclonic Epilepsy Patients[J]. Chin J Clin Psychol, 2021, 29(5): 918-922. DOI: 10.16128/j.cnki.1005-3611.2021.05.005.
Ke M, Peng C, Li XX, et al. Application of CLM in Brain Network in Juvenile Myoclonic Epilepsy Patients[J]. Chin J Clin Psychol, 2019, 27(3): 443-447. DOI: 10.16128/j.cnki.1005-3611.2019.03.003.
Garcia‐Ramos C, Dabbs K, Lin JJ, et al. Progressive dissociation of cortical and subcortical network development in children with new‐onset juvenile myoclonic epilepsy[J]. Epilepsia, 2018, 59(11): 2086-2095. DOI: 10.1111/epi.14560.
Routley B, Shaw A, Muthukumaraswamy SD, et al. Juvenile myoclonic epilepsy shows increased posterior theta, and reduced sensorimotor beta resting connectivity[J]. Epilepsy Res, 2020, 163(7): 1-11. DOI: 10.1016/j.eplepsyres.2020.106324.
Sanjari MH, Sanjari MA, Hasanzadeh A, et al. A systematic review of resting-state and task-based fmri in juvenile myoclonic epilepsy[J]. Brain Imaging Behav, 2022, 16(3): 1465-1494. DOI: 10.1007/s11682-021-00595-5.
Özçelik EU, Kurt E, Şirin NG, et al. Functional connectivity disturbances of ascending reticular activating system and posterior thalamus in juvenile myoclonic epilepsy in relation with photosensitivity: A resting-state fMRI study[J/OL]. Epilepsy Res, 2021, 171 [2021-12-26]. DOI: 10.1016/j.eplepsyres.2021.106569.
Lurie DJ, Kessler D, Bassett DS, et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI[J]. Netw Neurosci, 2020, 4(1): 30-69. DOI: 10.1162/netn_a_00116.
Dixon ML, Gross JJ. Dynamic network organization of the self: implications for affective experience[J]. Curr Opin Behav Sci, 2021, 39(6): 1-9. DOI: 10.1016/j.cobeha.2020.11.004
Dong G, Yang L, Chiang-shan RL, et al. Dynamic network connectivity predicts subjective cognitive decline: the Sino-Longitudinal Cognitive impairment and dementia study[J]. Brain Imaging Behav, 2020, 14(6): 2692-2707. DOI: 10.1007/s11682-019-00220-6.
Fu Z, Tu Y, Di X, et al. Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism[J]. NeuroImage, 2019, 190: 191-204. DOI: 10.1016/j.neuroimage.2018.06.003.
Kim J, Criaud M, Cho SS, et al. Abnormal intrinsic brain functional network dynamics in Parkinson's disease[J]. Brain, 2017, 140(11): 2955-2967. DOI: 10.1093/brain/awx233.
Liu F, Wang Y, Li M, et al. Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonicseizure[J]. Hum Brain Mapp, 2017, 38(2): 957-973. DOI: 10.1002/hbm.23430.
Zhang Z, Liu G, Yao Z, et al. Changes in dynamics within and between resting-state subnetworks in juvenile myoclonic epilepsy occur at multiple frequency bands[J]. Front Neurol, 2018, 9(448): 1-11. DOI: 10.3389/fneur.2018.00448.
Zhang Z, Liu G, Zheng W, et al. Altered dynamic effective connectivity of the default mode network in newly diagnosed drug-naïve juvenile myoclonic epilepsy[J]. Neuroimage Clin, 2020, 28(102431): 1-10. DOI: 10.1016/j.nicl.2020.102431.
Ebrahimzadeh E, Shams M, Jounghani AR, et al. Localizing confined epileptic foci in patients with an unclear focus or presumed multifocality using a component-based EEG-fMRI method[J]. Cogn Neurodyn, 2021, 15(2): 207-222. DOI: 10.1007/s11571-020-09614-5.
Pegg EJ, Taylor JR, Laiou P, et al. Interictal electroencephalographic functional network topology in drug-resistant and well-controlled idiopathic generalized epilepsy[J]. Epilepsia, 2021, 62(2): 492-503. DOI: 10.1111/epi.16811.
Qin Y, Jiang S, Zhang Q, et al. BOLD-fMRI activity informed by network variation of scalp EEG in juvenile myoclonic epilepsy[J]. Neuroimage Clin, 2019, 22(101759): 1-10. DOI: 10.1016/j.nicl.2019.101759.
McCafferty C, David F, Venzi M, et al. Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures[J]. Nat Neurosci, 2018, 21(5): 744-756. DOI: 10.1038/s41593-018-0130-4.
Qin Y, Zhang N, Chen Y, et al. Rhythmic network modulation to thalamocortical couplings in epilepsy[J/OL]. Int J Neural Syst, 2020, 30(11) [2021-12-26]. DOI: 10.1142/S0129065720500148.
Iqbal N, Caswell H, Muir R, et al. Neuropsychological profiles of patients with juvenile myoclonic epilepsy and their siblings: an extended study[J]. Epilepsia, 2015, 56(8): 1301-1308. DOI: 10.1111/epi.13061.
Wandschneider B, Hong SJ, Bernhardt BC, et al. Developmental MRI markers cosegregate juvenile patients with myoclonic epilepsy and their healthy siblings[J/OL]. Neurology, 2019, 93(13) [2021-12-26]. DOI: 10.1212/WNL.0000000000008173.
Cendes F, Cascino GD. MRI endophenotypes of heritability and cognitive dysfunction in juvenile myoclonic epilepsy[J]. Neurology, 2019, 93(13): 577-587. DOI: 10.1212/WNL.0000000000008162.
Tangwiriyasakul C, Perani S, Abela E, et al. Sensorimotor network hypersynchrony as an endophenotype in families with genetic generalized epilepsy: A resting-state functional magnetic resonance imaging study[J/OL]. Epilepsia, 2019, 60(3) [2021-12-26]. DOI: 10.1007/s11547-010-0602-4.
Osborne KJ, Walther S, Shankman SA, et al. Psychomotor slowing in schizophrenia: implications for endophenotype and biomarker development[J]. Biomark Neuropsychiatry, 2020, 2(100016): 1-10. DOI: 10.1016/j.bionps.2020.100016.
Gesche J, Wüstenhagen S, Krøigård T, et al. Magnetic evoked potential polyphasia in idiopathic/genetic generalized epilepsy: An endophenotype not associated with treatment response[J]. Clin Neurophysiol, 2021, 132(7): 1499-1504. DOI: 10.1016/j.clinph.2021.02.405.
Caciagli L, Wandschneider B, Xiao F, et al. Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings[J]. Brain, 2019, 142(9): 2670-2687. DOI: 10.1093/brain/awz215.
Caciagli L, Wandschneider B, Centeno M, et al. Motor hyperactivation during cognitive tasks: An endophenotype of juvenile myoclonic epilepsy[J]. Epilepsia, 2020, 61(7): 1438-1452. DOI: 10.1111/epi.16575.

PREV Advances in MRI study of brain structure and function changes and related factors of metabolic disorders in Parkinson,s disease
NEXT Research progress of magnetic resonance imaging in predicting the prognosis of acute ischemic stroke

Tel & Fax: +8610-67113815    E-mail: