Share this content in WeChat
Experience Exchange
Scanning parameters optimization of MSDE sequence for intracranial vascular wall imaging
LI Ximao  TAO Li  CAI Yan  GONG Qihui  LÜ Fajin 

Cite this article as: Li XM, Tao L, Cai Y, et al. Scanning parameters optimization of MSDE sequence for intracranial vascular wall imaging[J]. Chin J Magn Reson Imaging, 2022, 13(7): 112-115, 125. DOI:10.12015/issn.1674-8034.2022.07.020.

[Abstract] Objective To investigate the effect of motion-sensitized driven-equilibrium (MSDE) sequence on the image quality of intracranial vessel wall magnetic resonance imaging.Materials and Methods Sixty-five subjects were randomly selected for brain MRI using MSDE sequence before and after optimization. The overall image, lumen and wall image quality of main intracranial artery segments were evaluated subjectively, and the signal to noise ratio (SNR) and contrast to noise ratio (CNR) of white matter, gray matter and cerebrospinal fluid were measured objectively before and after optimization. The differences between the two groups of images before and after optimization were compared.Results The scanning time of MSDE sequence is shortened from 4 min 4 s to 2 min 29 s after parameter optimization. SNR and CNR values of white matter, gray matter and cerebrospinal fluid after optimization were higher than those before optimization with significant differences (P<0.05). Overall image quality, right vertebral artery V4 segment, basilar artery, right internal carotid artery C1 segment, bilateral internal carotid artery C4 segment, bilateral posterior cerebral artery P2 segment after optimization was better than that before optimization with significant difference (P<0.05).Conclusions The MSDE sequence with optimized parameters can significantly shorten the scanning time, improve the image quality and clearly display the intracranial vascular wall, which meets the diagnostic requirements.
[Keywords] magnetic resonance imaging;motion-sensitized driven-equilibrium;parameter optimization;intracranial vascular wall;black blood imaging;image quality

LI Ximao   TAO Li   CAI Yan   GONG Qihui   LÜ Fajin*  

Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Lü FJ, E-mail:

Conflicts of interest   None.

Received  2022-04-12
Accepted  2022-06-22
DOI: 10.12015/issn.1674-8034.2022.07.020
Cite this article as: Li XM, Tao L, Cai Y, et al. Scanning parameters optimization of MSDE sequence for intracranial vascular wall imaging[J]. Chin J Magn Reson Imaging, 2022, 13(7): 112-115, 125.DOI:10.12015/issn.1674-8034.2022.07.020

Sun HX, Wang WZ. A nationwide epidemiological sample survey on cerebrovascular disease in China[J]. Chin J Contemp Neurol Neurosurg, 2018, 18(2): 83-88. DOI: 10.3969/j.issn.1672-6731.2018.02.002.
Wang LD, Ji XM, Kang DZ, et al. Brief report on stroke center in China, 2020[J]. Chin J Cerebrovasc Dis, 2021, 18(11): 737-743.
Group MR, Radiology Branch of Chinese Medical Association. Expert consensus on techniques and application of intracranial MR vessel wall imaging in China[J]. Chin J Radiol, 2019, 53(12): 1045-1059. DOI: 10.3760/cma.j.issn.1005?1201.2019.12.006.
Mazzacane F, Mazzoleni V, Scola E, et al. Vessel wall magnetic resonance imaging in cerebrovascular diseases[J]. Diagnostics (Basel), 2022, 12(2): 258. DOI: 10.3390/diagnostics12020258.
Santarosa C, Cord B, Koo A, et al. Vessel wall magnetic resonance imaging in intracranial aneurysms: principles and emerging clinical applications[J]. Interv Neuroradiol, 2020, 26(2): 135-146. DOI: 10.1177/1591019919891297.
Zhao XH, Li C. Standardizing intracranial MR vessel wall imaging and promoting its clinical application[J]. Chin J Radiol, 2019, 53(12): 1029-1030. DOI: 10.3760/cma.j.issn.1005?1201.2019.12.002.
Zhao HL, Cao Y, Liu XS, et al. Application experience of improved motion sensitized driven equilibrium (iMSDE) black blood magnetic resonance imaging in the diagnosis of carotid Stenosis[J]. J Clin Radiol, 2012, 31(10): 1393-1396. DOI: 10.13437/j.cnki.jcr.2012.10.016.
Wang HW, Wu C, Xue Z, et al. A supplemental technique for preoperative evaluation of giant intracranial aneurysm[J]. J Neurol Surg A Cent Eur Neurosurg, 2021, 82(5): 424-429. DOI: 10.1055/s-0040-1721006.
Ning ZH, Zhang N, Qiao HY, et al. Free-breathing three-dimensional isotropic-resolution MR sequence for simultaneous vessel wall imaging of bilateral renal arteries and abdominal aorta: feasibility and reproducibility[J]. Med Phys, 2022, 49(2): 854-864. DOI: 10.1002/mp.15436.
Meng ZN, Zhu XQ. Applications and research progress of motion-sensitized driven-equilibrium[J]. Chin J Magn Reson Imaging, 2021, 12(8): 121-124. DOI: 10.12015/issn.1674-8034.2021.08.029.
Lin ZY, Zhang XD, Guo L, et al. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing[J]. J Magn Reson Imaging, 2019, 50(6): 1843-1851. DOI: 10.1002/jmri.26752.
Chen RY, Peng W, Wang W, et al. Control study of one-click bone removal and subtraction in the reconstruction of cerebral CTA[J]. Chin Comput Med Imaging, 2020, 26(2): 170-175. DOI: 10.19627/j.cnki.cn31-1700/th.2020.02.016.
Yim Y, Chung MS, Kim SY, et al. Wave-controlled aliasing in parallel imaging magnetization-prepared gradient echo (wave-CAIPI MPRAGE) accelerates speed for pediatric brain MRI with comparable diagnostic performance[J/OL]. Sci Rep, 2021. DOI: 10.1038/s41598-021-92759-y.
Wang JN, Yarnykh VL, Hatsukami T, et al. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence[J]. Magn Reson Med, 2007, 58(5): 973-981. DOI: 10.1002/mrm.21385.
Kang ND, Qiao Y, Wasserman BA. Essentials for interpreting intracranial vessel wall MRI results: state of the art[J]. Radiology, 2021, 300(3): 492-505. DOI: 10.1148/radiol.2021204096.
Choi JW, Han MR, Hong JM, et al. Feasibility of improved motion-sensitized driven-equilibrium (iMSDE) prepared 3D T1-weighted imaging in the diagnosis of vertebrobasilar artery dissection[J]. J Neuroradiol, 2018, 45(3): 186-191. DOI: 10.1016/j.neurad.2017.11.006.
Li J, Li DY, Yang DD, et al. Irregularity of carotid plaque surface predicts subsequent vascular event: a MRI study[J]. J Magn Reson Imaging, 2020, 52(1): 185-194. DOI: 10.1002/jmri.27038.
Yang LQ, Jia WX. Progress of high resolution magnetic resonance angiography in intracranial vasculitis[J]. J Imaging Res Med Appl, 2021, 5(6): 6-7. DOI: 10.3969/j.issn.2096-3807.2021.06.003.
Li LQ, Chai JT, Biasiolli L, et al. Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging[J]. Radiology, 2014, 273(2): 560-569. DOI: 10.1148/radiol.14131717.
Dong L, Wang JN, Yarnykh VL, et al. Efficient flow suppressed MRI improves interscan reproducibility of carotid atherosclerosis plaque burden measurements[J]. J Magn Reson Imaging, 2010, 32(2): 452-458. DOI: 10.1002/jmri.22274.
Henningsson M, Malik S, Botnar R, et al. Black-blood contrast in cardiovascular MRI[J]. J Magn Reson Imaging, 2022, 55(1): 61-80. DOI: 10.1002/jmri.27399.
Kanoto M, Hosoya T, Toyoguchi Y, et al. Delineation of malignant glioma by turbo spin echo multislice motion-sensitized driven-equilibrium (TSE-MSDE) with gadolinium-based contrast media: a case report[J]. Magn Reson Imaging, 2013, 31(7): 1251-1253. DOI: 10.1016/j.mri.2013.01.004.
Zhu CC, Graves MJ, Yuan JM, et al. Optimization of improved motion-sensitized driven-equilibrium (iMSDE) blood suppression for carotid artery wall imaging[J]. J Cardiovasc Magn Reson, 2014, 16(1): 61. DOI: 10.1186/s12968-014-0061-5.
Yoon D, Antil N, Biswal S, et al. A robust 3D fast spin-echo technique for fast examination of the brachial plexus[J/OL]. Skeletal Radiol, 2022 [2022-04-12]. DOI: 10.1007/s00256-022-04021-9.
Vranic JE, Hartman JB, Mossa-Basha M. High-resolution magnetic resonance vessel wall imaging for the evaluation of intracranial vascular pathology[J]. Neuroimaging Clin N Am, 2021, 31(2): 223-233. DOI: 10.1016/j.nic.2021.01.005.
Pravdivtseva MS, Gaidzik F, Berg P, et al. Pseudo-enhancement in intracranial aneurysms on black-blood MRI: effects of flow rate, spatial resolution, and additional flow suppression[J]. J Magn Reson Imaging, 2021, 54(3): 888-901. DOI: 10.1002/jmri.27587.
Zhang N, Zhang F, Deng ZX, et al. 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions[J]. J Cardiovasc Magn Reson, 2018, 20(1): 39. DOI: 10.1186/s12968-018-0453-z.
Nagahata S, Nagahata M, Obara M, et al. Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional Turbo spin-echo sequence with motion-sensitized driven-equilibrium: a sign of ruptured aneurysm?[J]. Clin Neuroradiol, 2016, 26(3): 277-283. DOI: 10.1007/s00062-014-0353-z.
Yoneyama M, Nakamura M, Takahara T, et al. Improvement of T1 contrast in whole-brain black-blood imaging using motion-sensitized driven-equilibrium prepared 3D turbo spin echo (3D MSDE-TSE)[J]. Magn Reson Med Sci, 2014, 13(1): 61-65. DOI: 10.2463/mrms.2013-0047.
Zhai YH, Sun NN, Wang JX, et al. The preliminary study on the parameter optimization of IVIM-DWI pulse sequence in gastric cancer patients with 3.0 T MR[J]. Chin J Magn Reson Imaging, 2021, 12(2): 34-37, 48. DOI: 10.12015/issn.1674-8034.2021.02.008.
Obara M, Kuroda K, Wang JN, et al. Comparison between two types of improved motion-sensitized driven-equilibrium (iMSDE) for intracranial black-blood imaging at 3.0 tesla[J]. J Magn Reson Imaging, 2014, 40(4): 824-831. DOI: 10.1002/jmri.24430.
Ding XD, Liang HD, Ma XW. Discussion on RESOLVE technology to reduce magnetic sensitive artifacts[J]. China Med Devices, 2020, 35(10): 135-138. DOI: 10.3969/j.issn.1674-1633.2020.10.030.

PREV The application value of MTP synthetic sequence in the diagnosis of acute ischemic stroke
NEXT Value of multi-parameter MRI combined with immune inflammatory markers in predicting axillary lymph node metastasis of breast cancer

Tel & Fax: +8610-67113815    E-mail: