Share this content in WeChat
Experience Exchange
The application value of MTP synthetic sequence in the diagnosis of acute ischemic stroke
ZHANG Sha  ZHONG Jiali  HUANG Xin  PENG Ruchen 

Cite this article as: Zhang S, Zhong JL, Huang X, et al. The application value of MTP synthetic sequence in the diagnosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(7): 107-111. DOI:10.12015/issn.1674-8034.2022.07.019.

[Abstract] Objective To explore the application value of multiple parametric (MTP) synthetic sequence in acute ischemic stroke.Materials and Methods A prospective study was conducted on 51 patients with acute ischemic stroke. Conventional sequence and MTP synthetic sequence were scanned respectively. The differences in overall image quality, image signal-to-noise ratio (SNR) and lesion detection efficiency were compared.Results In terms of subjective score of overall image quality, compared with conventional sequence, MTP synthetic sequence has no statistical significance in T1WI and susceptibility weighted imaging (SWI) sequence (Z=-1.89, -0.45; P=0.06, 0.66), and has statistical significance in T2WI and T2WI-fluid attenuated inversion recovery (T2WI-FLAIR) sequence (Z=-3.64, -4.16; P<0.001). The image quality of conventional sequence is better than MTP synthetic sequence. In terms of image brain tissue SNR, MTP synthetic sequence was superior to conventional sequence in brain tissue SNR of T1WI, proton density weighted image (PDWI), T2WI-FLAIR and SWI (Z=-4.78; P<0.001). There was no statistical significance between MTP synthetic sequence and conventional sequence in the display efficiency of cerebral infarction lesions and the detection rate of microbleeding lesions (χ2=0.54, 0.16; P=0.77, 0.92).Conclusions The application of MTP synthetic sequence can shorten the examination time of patients and obtain routine and quantitative MRI images. It has good clinical application value for the imaging diagnosis of acute ischemic stroke.
[Keywords] magnetic resonance imaging;multiple parametric synthetic sequence;three-dimensional imaging;acute ischemic stroke;brain microbleeding

ZHANG Sha   ZHONG Jiali   HUANG Xin   PENG Ruchen*  

Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China

Peng RC, E-mail:

Conflicts of interest   None.

Received  2022-03-01
Accepted  2022-04-12
DOI: 10.12015/issn.1674-8034.2022.07.019
Cite this article as: Zhang S, Zhong JL, Huang X, et al. The application value of MTP synthetic sequence in the diagnosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(7): 107-111.DOI:10.12015/issn.1674-8034.2022.07.019

Feske SK. Ischemic Stroke[J]. Am J Med, 2021, 134(12): 1457-1464. DOI: 10.1016/j.amjmed.2021.07.027.
Mendelson SJ, Prabhakaran S. Diagnosis and Management of Transient Ischemic Attack and Acute Ischemic Stroke: A Review[J]. JAMA, 2021, 325(11): 1088-1098. DOI: 10.1001/jama.2020.26867.
Suh CH, Jung SC, Cho SJ, et al. MRI for prediction of hemorrhagic transformation in acute ischemic stroke: a systematic review and meta-analysis[J]. Acta Radiol, 2020, 61(7): 964-972. DOI: 10.1177/0284185119887593.
Ma L, Lou X, Chen M, et al. Chinese guideline for standard utilization of imaging for cerebrovascular diseases[J]. Chin J Radiol, 2019, 53(11): 916-940. DOI: 10.3760/cma.j.issn.1005?1201.2019.11.002.
Li L, Liu MS, Li GQ, et al. Susceptibility-weighted Imaging in Thrombolytic Therapy of Acute Ischemic Stroke[J]. Chin Med J (Engl), 2017, 130(20): 2489-2497. DOI: 10.4103/0366-6999.216401.
Lu P, Cui L, Zhao X. The Prognostic Impact of Susceptibility-Weighted Imaging Prominent Veins in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis[J]. Neuropsychiatr Dis Treat, 2021, 17: 3069-3079. DOI: 10.2147/NDT.S331874.
Ryu KH, Choi DS, Baek HJ, et al. Clinical feasibility of 1-min ultrafast brain MRI compared with routine brain MRI using synthetic MRI: a single center pilot study[J]. J Neurol, 2019, 266(2): 431-439. DOI: 10.1007/s00415-018-9149-4.
Prakkamakul S, Witzel T, Huang S, et al. Ultrafast Brain MRI: Clinical Deployment and Comparison to Conventional Brain MRI at 3T[J]. J Neuroimaging, 2016, 26(5): 503-510. DOI: 10.1111/jon.12365.
Goncalves FG, Serai SD, Zuccoli G. Synthetic Brain MRI: Review of Current Concepts and Future Directions[J]. Top Magn Reson Imaging, 2018, 27(6): 387-393. DOI: 10.1097/RMR.0000000000000189.
West H, Leach JL, Jones BV, et al. Clinical validation of synthetic brain MRI in children: initial experience[J]. Neuroradiology, 2017, 59(1): 43-50. DOI: 10.1007/s00234-016-1765-z.
Di Giuliano F, Minosse S, Picchi E, et al. Comparison between synthetic and conventional magnetic resonance imaging in patients with multiple sclerosis and controls[J]. MAGMA, 2020, 33(4): 549-557. DOI: 10.1007/s10334-019-00804-9.
Liu HM, Yin GP, Bie F. Comparison of image quality of brain between conventional MR sequence and compilation sequence[J]. Chin J Med Imag Tech, 2019, 35(2): 268-271. DOI: 10.13929/j.1003-3289.201805163.
Li CW, Hsu AL, Huang CC, et al. Reliability of Synthetic Brain MRI for Assessment of Ischemic Stroke with Phantom Validation of a Relaxation Time Determination Method[J]. J Clin Med, 2020, 14, 9(6): 1857. DOI: 10.3390/jcm9061857.
Montejo C, Laredo C, Llull L, et al. Synthetic MRI in subarachnoid haemorrhage[J/OL]. Clin Radiol, 2021, 76(10) [2022-03-01]. DOI: 10.1016/j.crad.2021.05.021.
Sun Q, Wang Q, Bie F. Application value of Synthetic MRI in acute ischemic stroke patients[J]. J Pract Radiol, 2021, 37(10): 1583-1586. DOI: 10.3969/j.issn.1002-1671.2021.10.003.
Chen S, Ouyang H. The application value of synthetic MRI in diagnosis[J]. Chin J Magn Reson Imaging, 2020, 11(9): 833-836. DOI: 10.12015/issn.1674-8034.2020.09.027.
Tanenbaum LN, Tsiouris AJ, Johnson AN, et al. Synthetic MRI for Clinical Neuroimaging: Results of the Magnetic Resonance Image Compilation (MAGiC) Prospective, Multicenter, Multireader Trial[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1103-1110. DOI: 10.3174/ajnr.A5227.
Ryu KH, Baek HJ, Moon JI, et al. Initial clinical experience of synthetic MRI as a routine neuroimaging protocol in daily practice: A single-center study[J]. J Neuroradiol, 2020, 47(2): 151-160. DOI: 10.1016/j.neurad.2019.03.002.
Ye Y, Lyu J, Hu Y, et al. MULTI-parametric MR imaging with fLEXible design (MULTIPLEX)[J]. Magn Reson Med, 2022, 87(2): 658-673. DOI: 10.1002/mrm.28999.
Wicaksono KP, Fushimi Y, Nakajima S, et al. Two-Minute Quantitative Susceptibility Mapping From Three-Dimensional Echo-Planar Imaging: Accuracy, Reliability, and Detection Performance in Patients With Cerebral Microbleeds[J]. Invest Radiol, 2021, 56(2): 69-77. DOI: 10.1097/RLI.0000000000000708.
McAllister A, Leach J, West H, et al. Quantitative Synthetic MRI in Children: Normative Intracranial Tissue Segmentation Values during Development[J]. AJNR Am J Neuroradiol, 2017, 38(12): 2364-2372. DOI: 10.3174/ajnr.A5398.
Zhao CW, Zhao X, Liu YC. Initial application of synthetic MRI in evaluating brain maturation of preterm infants[J]. Chin J Magn Reson Imaging, 2021, 12(12): 1-5. DOI: 10.12015/issn.1674-8034.2021.12.001.
Schmidbauer V, Geisl G, Diogo M, et al. SyMRI detects delayed myelination in preterm neonates[J]. Eur Radiol, 2019, 29(12): 7063-7072. DOI: 10.1007/s00330-019-06325-2.
Duchaussoy T, Budzik JF, Norberciak L, et al. Synthetic T2 mapping is correlated with time from stroke onset: a future tool in wake-up stroke management[J]. Eur Radiol, 2019, 29(12): 7019-7026. DOI: 10.1007/s00330-019-06270-0.
Seiler A, Lauer A, Deichmann R, et al. Complete Restitution of the Ischemic Penumbra after Successful Thrombectomy: A Pilot Study Using Quantitative MRI[J]. Clin Neuroradiol, 2019, 29(3): 415-423. DOI: 10.1007/s00062-018-0675-3.

PREV A study of the correlation between the compression location and the painful region in classical trigeminal neuralgia by MRN
NEXT Scanning parameters optimization of MSDE sequence for intracranial vascular wall imaging

Tel & Fax: +8610-67113815    E-mail: