Share:
Share this content in WeChat
X
Clinical Article
The reproducibility of liver stiffness from magnetic resonance elastography under confounding factors in patients with chronic liver disease
PAN Zhongxian  WEN Wucheng  MENG Fanqi  HAO Liantao  LI Zhujing  YUAN Jing  YANG Xiaoyan  LÜ Hanqing  HU Yuanming  CHEN Yueyao 

Cite this article as: Pan ZX, Wen WC, Meng FQ, et al. The reproducibility of liver stiffness from magnetic resonance elastography under confounding factors in patients with chronic liver disease[J]. Chin J Magn Reson Imaging, 2022, 13(7): 35-41. DOI:10.12015/issn.1674-8034.2022.07.007.


[Abstract] Objective To investigate the reproducibility and stability of liver stiffness (LS) from magnetic resonance elastography (MRE) in the background of chronic liver disease (CLD).Materials and Methods From April 2019 to June 2020, sixty patient cases with CLD had liver MRE twice on the same day at our hospital were enrolled, and LS was measured by two observers. The multi-echo Dixon sequence was applied to detect R2* and proton density fat fraction (PDFF) to assess whether a patient had hepatic iron overload or steatosis. High BMI was defined as a BMI of higher than 25 kg/m2. Patients were divided into groups based on whether or not they had hepatic iron overload, steatosis, or a high BMI. The intraclass correlation coefficient (ICC) and the Bland-Altman method were used to analyze the intra-observer, inter-observer, and short-term re-examination reproducibility and stability of LS in each group.Results The intra-observer, inter-observer and short-term re-examination ICCs for LS values were: 0.987, 0.981 and 0.982 for the hepatic iron overload group; 0.994, 0.990 and 0.987 for the steatosis group; and 0.958, 0.948 and 0.926 for the high BMI group. The Bland-Altman plots show that most of the LS differences between intra-observer, inter-observer, and short-term re-examinations were within the 95% limits of agreement, and the mean values (upper, lower) of the differences were: hepatic iron overload group 0.02 (-0.10, 0.13), 0.00 (-0.14, 0.15), 0.04 (-0.09, 0.16); steatosis group 0.01 (-0.09, 0.11), 0.00 (-0.13, 0.13), 0.04 (-0.10, 0.17); high BMI group 0.00 (-0.10, 0.11), -0.01 (-0.13, 0.11), 0.03 (-0.09, 0.16). After excluding potential confounding factors, the intra-observer, inter-observer and short-term re-examination ICCs for LS values were: 0.978, 0.984 and 0.918 for the hepatic iron overload group; 0.996, 0.996 and 0.990 for the steatosis group; and 0.907, 0.968 and 0.957 for the high BMI group.Conclusions MRE measures of liver stiffness in CLD patients with hepatic iron overload, steatosis, or a high BMI are highly reproducible and stable.
[Keywords] chronic liver disease;iron overload;steatosis;magnetic resonance elastography;reproducibility

PAN Zhongxian   WEN Wucheng   MENG Fanqi   HAO Liantao   LI Zhujing   YUAN Jing   YANG Xiaoyan   LÜ Hanqing   HU Yuanming   CHEN Yueyao*  

Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China

Chen YY, E-mail: drchenyueyao@163.com

Conflicts of interest   None.

Received  2022-03-22
Accepted  2022-06-27
DOI: 10.12015/issn.1674-8034.2022.07.007
Cite this article as: Pan ZX, Wen WC, Meng FQ, et al. The reproducibility of liver stiffness from magnetic resonance elastography under confounding factors in patients with chronic liver disease[J]. Chin J Magn Reson Imaging, 2022, 13(7): 35-41.DOI:10.12015/issn.1674-8034.2022.07.007

[1]
Reiter R, Tzschätzsch H, Schwahofer F, et al. Diagnostic performance of tomoelastography of the liver and spleen for staging hepatic fibrosis[J]. Eur Radiol, 2020, 30(3): 1719-1729. DOI: 10.1007/s00330-019-06471-7.
[2]
Li MK, Wu XY, Wu B. Research progress of clinical application of the magnetic resonance elastography in chronic liver disease[J]. Chin J Dig Med Imageology Electron Ed, 2021, 11(3): 126-131. DOI: 10.3877/cma.j.issn.2095-2015.2021.03.006.
[3]
Zhou JH, Li RK, Yan FH. The application of magnetic resonance elastography in chronic liver disease[J]. Chin Hepatol, 2021, 26(2): 112-114. DOI: 10.14000/j.cnki.issn.1008-1704.2021.02.005.
[4]
Loomba R, Adams LA. Advances in non-invasive assessment of hepatic fibrosis[J]. Gut, 2020, 69(7): 1343-1352. DOI: 10.1136/gutjnl-2018-317593.
[5]
Masuzaki R, Kanda T, Sasaki R, et al. Noninvasive assessment of liver fibrosis: current and future clinical and molecular perspectives[J/OL]. Int J Mol Sci, 2020, 21(14) [2022-03-22]. https://www.mdpi.com/1422-0067/21/14/4906. DOI: 10.3390/ijms21144906.
[6]
Li MK, Wan SZ, Wu XY, et al. Diagnostic performance of elastography on liver fibrosis in antiviral treatment-naive chronic hepatitis B patients: a meta-analysis[J/OL]. Gastroenterol Rep (Oxf), 2022, 10(1) [2022-03-22]. https://academic.oup.com/gastro/article/doi/10.1093/gastro/goac005/6529523? DOI: 10.1093/gastro/goac005.
[7]
Lee YJ, Lee JM, Lee JE, et al. MR elastography for noninvasive assessment of hepatic fibrosis: reproducibility of the examination and reproducibility and repeatability of the liver stiffness value measurement[J]. J Magn Reson Imaging, 2014, 39(2): 326-331. DOI: 10.1002/jmri.24147.
[8]
Wang K, Li W, Peng Z, et al. Repeatability of magnetic resonance elastography for evaluating hepatic fibrosis[J]. Radiol Pract, 2016, 31(8): 752-755. DOI: 10.13609/j.cnki.1000-0313.2016.08.018.
[9]
Wagner M, Corcuera-Solano I, Lo G, et al. Technical failure of MR elastography examinations of the liver: experience from a large single-center study[J]. Radiology, 2017, 284(2): 401-412. DOI: 10.1148/radiol.2016160863.
[10]
Joshi M, Dillman JR, Singh K, et al. Quantitative MRI of fatty liver disease in a large pediatric cohort: correlation between liver fat fraction, stiffness, volume, and patient-specific factors[J]. Abdom Radiol (NY), 2018, 43(5): 1168-1179. DOI: 10.1007/s00261-017-1289-y.
[11]
Trout AT, Sheridan RM, Serai SD, et al. Diagnostic performance of MR elastography for liver fibrosis in children and young adults with a spectrum of liver diseases[J]. Radiology, 2018, 287(3): 824-832. DOI: 10.1148/radiol.2018172099.
[12]
Wang J, Glaser KJ, Zhang TH, et al. Assessment of advanced hepatic MR elastography methods for susceptibility artifact suppression in clinical patients[J]. J Magn Reson Imaging, 2018, 47(4): 976-987. DOI: 10.1002/jmri.25818.
[13]
Serai SD, Trout AT. Can MR elastography be used to measure liver stiffness in patients with iron overload?[J]. Abdom Radiol (NY), 2019, 44(1): 104-109. DOI: 10.1007/s00261-018-1723-9.
[14]
Kim D, Kim WR, Talwalkar JA, et al. Advanced fibrosis in nonalcoholic fatty liver disease: noninvasive assessment with MR elastography[J]. Radiology, 2013, 268(2): 411-419. DOI: 10.1148/radiol.13121193.
[15]
World Health Organization. Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection[M]. Geneva: WHO, 2015.
[16]
Park HS, Choe WH, Han HS, et al. Assessing significant fibrosis using imaging-based elastography in chronic hepatitis B patients: pilot study[J]. World J Gastroenterol, 2019, 25(25): 3256-3267. DOI: 10.3748/wjg.v25.i25.3256.
[17]
Reiter R, Shahryari M, Tzschätzsch H, et al. Spatial heterogeneity of hepatic fibrosis in primary sclerosing cholangitis vs. viral hepatitis assessed by MR elastography[J]. Sci Rep, 2021, 11(1): 9820. DOI: 10.1038/s41598-021-89372-4.
[18]
Caussy C, Alquiraish MH, Nguyen P, et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis[J]. Hepatology, 2018, 67(4): 1348-1359. DOI: 10.1002/hep.29639.
[19]
Hu FB, Yang R, Huang ZX, et al. 3D Multi-Echo Dixon technique for simultaneous assessment of liver steatosis and iron overload in patients with chronic liver diseases: a feasibility study[J]. Quant Imaging Med Surg, 2019, 9(6): 1014-1024. DOI: 10.21037/qims.2019.05.20.
[20]
Ajmera V, Loomba R. Imaging biomarkers of NAFLD, NASH, and fibrosis[J/OL]. Mol Metab, 2021, 50 [2022-03-22]. https://linkinghub.elsevier.com/retrieve/pii/S2212877821000077. DOI: 10.1016/j.molmet.2021.101167.
[21]
Gu JL, Liu SS, du SX, et al. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis[J]. Eur Radiol, 2019, 29(7): 3564-3573. DOI: 10.1007/s00330-019-06072-4.
[22]
Tang A, Desai A, Hamilton G, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease[J]. Radiology, 2015, 274(2): 416-425. DOI: 10.1148/radiol.14140754.
[23]
Kennedy P, Wagner M, Castéra L, et al. Quantitative elastography methods in liver disease: current evidence and future directions[J]. Radiology, 2018, 286(3): 738-763. DOI: 10.1148/radiol.2018170601.
[24]
Tzschätzsch H, Guo J, Dittmann F, et al. Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves[J]. Med Image Anal, 2016, 30: 1-10. DOI: 10.1016/j.media.2016.01.001.
[25]
Streitberger KJ, Guo J, Tzschätzsch H, et al. High-resolution mechanical imaging of the kidney[J]. J Biomech, 2014, 47(3): 639-644. DOI: 10.1016/j.jbiomech.2013.11.051.
[26]
Hamidieh AA, Shazad B, Ostovaneh MR, et al. Noninvasive measurement of liver fibrosis using transient elastography in pediatric patients with major thalassemia who are candidates for hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2014, 20(12): 1912-1917. DOI: 10.1016/j.bbmt.2014.07.025.
[27]
Pipaliya N, Solanke D, Parikh P, et al. Comparison of tissue elastography with magnetic resonance imaging T2* and serum ferritin quantification in detecting liver iron overload in patients with thalassemia major[J]. Clin Gastroenterol Hepatol, 2017, 15(2): 292-298. DOI: 10.1016/j.cgh.2016.08.046.
[28]
Paik JM, Golabi P, Younossi Y, et al. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD[J]. Hepatology, 2020, 72(5): 1605-1616. DOI: 10.1002/hep.31173.
[29]
Mak LY, Hui RW, Fung J, et al. Diverse effects of hepatic steatosis on fibrosis progression and functional cure in virologically quiescent chronic hepatitis B[J]. J Hepatol, 2020, 73(4): 800-806. DOI: 10.1016/j.jhep.2020.05.040.
[30]
Yin M, Glaser KJ, Talwalkar JA, et al. Hepatic MR elastography: clinical performance in a series of 1377 consecutive examinations[J]. Radiology, 2016, 278(1): 114-124. DOI: 10.1148/radiol.2015142141.
[31]
Tapper EB, Lok ASF. Use of liver imaging and biopsy in clinical practice[J]. N Engl J Med, 2017, 377(8): 756-768. DOI: 10.1056/NEJMra1610570.
[32]
Feier, Balassy C, Bastati N, et al. The diagnostic efficacy of quantitative liver MR imaging with diffusion-weighted, SWI, and hepato-specific contrast-enhanced sequences in staging liver fibrosis: a multiparametric approach[J]. Eur Radiol, 2016, 26(2): 539-546. DOI: 10.1007/s00330-015-3830-0.

PREV Histogram features of quantitative parameters from synthetic MRI and ADC map in predicting the expression of Ki-67 in breast cancer
NEXT Predictive value of MRI T2WI texture analysis for lymph node metastasis in rectal cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn