Share this content in WeChat
Application progress of hepatobiliary specific contrast agent MRI in diffuse disease of the liver
REN Xue  LIU Ailian  ZHAO Ying 

Cite this article as: Ren X, Liu AL, Zhao Y. Application progress of hepatobiliary specific contrast agent MRI in diffuse disease of the liver[J]. Chin J Magn Reson Imaging, 2022, 13(6): 151-154,159. DOI:10.12015/issn.1674-8034.2022.06.032.

[Abstract] MRI plays an important role in the detection and diagnosis of liver disease. As a new type of cell-specific contrast agent, hepatobiliary-specific contrast agent can be specifically taken up by normal hepatocytes, while the uptake of impaired hepatocytes is reduced. This characteristic not only makes it possible to obtain information of the overall liver function, but also has unique advantages in the assessment of segmental liver function. This article first introduces the principle of hepatobiliary specific contrast agent MRI, and the application progress in liver diffuse disease such as fatty liver, liver fibrosis, hepatitis, cirrhosis, liver ischemia is reviewed. The combination of hepatobiliary specific contrast agent and artificial intelligence methods in liver function assessment have also been reviewed.
[Keywords] magnetic resonance imaging;liver;liver function;diffuse liver disease;hepatocyte-specific contrast media;gadobenate dimeglumine;gadolinium-ethoxybenzyl-diethylenetriamine;artificial intelligence

REN Xue1   LIU Ailian1, 2*   ZHAO Ying1  

1 Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

2 Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian 116011, China

Liu AL, E-mail:

Conflicts of interest   None.

Received  2022-03-30
Accepted  2022-05-23
DOI: 10.12015/issn.1674-8034.2022.06.032
Cite this article as: Ren X, Liu AL, Zhao Y. Application progress of hepatobiliary specific contrast agent MRI in diffuse disease of the liver[J]. Chin J Magn Reson Imaging, 2022, 13(6): 151-154,159.DOI:10.12015/issn.1674-8034.2022.06.032

Dawson P, Blomley M. Gadolinium chelate MR contrast agents[J]. Clin Radiol, 1994, 49(7): 439-442. DOI: 10.1016/s0009-9260(05)81737-4.
Stocker D, Hectors S, Bane O, et al. Dynamic contrast-enhanced MRI perfusion quantification in hepatocellular carcinoma: comparison of gadoxetate disodium and gadobenate dimeglumine[J]. Eur Radiol, 2021, 31(12): 9306-9315. DOI: 10.1007/s00330-021-08068-5.
Hu Q, Mu QL, Guo FG, et al. Application of Gd-BOPTA enhanced MRI in the diagnosis of primary liver cancer[J]. Pract J Cancer, 2020, 35(11): 1868-1870, 1874. DOI: 10.3969/j.issn.1001-5930.2020.11.033.
Wang S. Dual plasma sampling method to determine the hepatic and renal clearance of the 2 diastereoisomers of Gd-EOB-DTPA[D]. Zhangjiakou: Hebei North University, 2020. DOI: 10.27767/d.cnki.ghbbf.2020.000112.
Zhou XJ, Long LL, Mo ZQ, et al. OATP1B3 expression in hepatocellular carcinoma correlates with intralesional Gd-EOB-DTPA uptake and signal intensity on Gd-EOB-DTPA-enhanced MRI[J]. Cancer Manag Res, 2021, 13: 1169-1177. DOI: 10.2147/CMAR.S292197.
Pastor CM, Vilgrain V. Steatosis Alters the Activity of Hepatocyte Membrane Transporters in Obese Rats. Cells. 2021; 10(10):2733. DOI: 10.3390/cells10102733
Xin YH. Value of high-resolution enhanced MR imaging for diagnosis of benign and malignant bile duct disorders and for preoperative evaluation of hilar cholangiocarcinoma[D]. Jinan: Shandong University, 2021. DOI: 10.27272/d.cnki.gshdu.2021.000219.
Yang L, Zeng MS, Rao SX, et al. Imaging findings analysis of micro-hepatocellular carcinoma (≤1 cm) in gadoxetate disodium enhanced MR[J]. Radiol Pract, 2020, 35(1): 50-55. DOI: 10.13609/j.cnki.1000-0313.2020.01.010.
Pastor CM, Wissmeyer M, Millet P. Concentrations of Gd-BOPTA in cholestatic fatty rat livers: role of transport functions through membrane proteins[J]. Contrast Media Mol Imaging, 2013, 8(2): 147-156. DOI: 10.1002/cmmi.1511.
Taibbi A, Picone D, Midiri M, et al. Diffuse liver diseases: role of imaging[J]. Semin Ultrasound CT MR, 2018, 39(2): 193-205. DOI: 10.1053/j.sult.2017.11.004.
Zhang BT, Zhai YN, Xiang XR, et al. Research progresses of MRI evaluation on hepatic fibrosis based on Gd-EOB-DTPA[J]. Chin J Med Imaging Technol, 2021, 37(9): 1427-1430. DOI: 10.13929/j.issn.1003-3289.2021.09.037.
Poetter-Lang S, Bastati N, Messner A, et al. Quantification of liver function using gadoxetic acid-enhanced MRI[J]. Abdom Radiol (NY), 2020, 45(11): 3532-3544. DOI: 10.1007/s00261-020-02779-x.
Xie YL, Zhang HF, Jin CL, et al. Gd-EOB-DTPA-enhanced T1ρ imaging vs diffusion metrics for assessment liver inflammation and early stage fibrosis of nonalcoholic steatohepatitis in rabbits[J]. Magn Reson Imaging, 2018, 48: 34-41. DOI: 10.1016/j.mri.2017.12.017.
Ding Y, Zeng MS, Rao SX, et al. Potential values for diagnosis and assessment of nonalcoholic fatty liver disease staging using Gd+-EOB-DTPA-enhanced MRI[J]. Chin J Hepatol, 2015, 23(4): 297-299. DOI: 10.3760/cma.j.issn.1007-3418.2015.04.014.
Yamada T, Obata A, Kashiwagi Y, et al. Gd-EOB-DTPA-enhanced-MR imaging in the inflammation stage of nonalcoholic steatohepatitis (NASH) in mice[J]. Magn Reson Imaging, 2016, 34(6): 724-729. DOI: 10.1016/j.mri.2016.03.009.
Fisher CD, Lickteig AJ, Augustine LM, et al. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats[J]. Eur J Pharmacol, 2009, 613(1/2/3): 119-127. DOI: 10.1016/j.ejphar.2009.04.002.
Canet MJ, Hardwick RN, Lake AD, et al. Modeling human nonalcoholic steatohepatitis-associated changes in drug transporter expression using experimental rodent models[J]. Drug Metab Dispos, 2014, 42(4): 586-595. DOI: 10.1124/dmd.113.055996.
Clarke JD, Hardwick RN, Lake AD, et al. Experimental nonalcoholic steatohepatitis increases exposure to simvastatin hydroxy acid by decreasing hepatic organic anion transporting polypeptide expression[J]. J Pharmacol Exp Ther, 2014, 348(3): 452-458. DOI: 10.1124/jpet.113.211284.
Yeom SK, Byun JH, Kim HJ, et al. Focal fat deposition at liver MRI with gadobenate dimeglumine and gadoxetic acid: quantitative and qualitative analysis[J]. Magn Reson Imaging, 2013, 31(6): 911-917. DOI: 10.1016/j.mri.2013.02.002.
Lai LY, Huang MP, Su S, et al. Liver fibrosis staging with gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid-enhanced: a systematic review and meta-analysis[J]. Curr Med Imaging, 2021, 17(7): 854-863. DOI: 10.2174/1573405616666201130101229.
Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives[J]. Cells, 2020, 9(4): 875. DOI: 10.3390/cells9040875.
Liu HF, Wang Q, Du YN, et al. Dynamic contrast-enhanced MRI with Gd-EOB-DTPA for the quantitative assessment of early-stage liver fibrosis induced by carbon tetrachloride in rabbits[J]. Magn Reson Imaging, 2020, 70: 57-63. DOI: 10.1016/j.mri.2020.04.010.
Tsuda N, Okada M, Murakami T. New proposal for the staging of nonalcoholic steatohepatitis: evaluation of liver fibrosis on Gd-EOB-DTPA-enhanced MRI[J]. Eur J Radiol, 2010, 73(1): 137-142. DOI: 10.1016/j.ejrad.2008.09.036.
Feier DA, Balassy C, Bastati N, et al. Liver fibrosis: histopathologic and biochemical influences on diagnostic efficacy of hepatobiliary contrast-enhanced MR imaging in staging[J]. Radiology, 2013, 269(2): 460-468. DOI: 10.1148/radiol.13122482.
Pan S, Wang L, Xin J. Combining 18 F-FDG PET and Gd-EOB-DTPA-enhanced MRI for staging liver fibrosis[J]. Life Sci, 2021, 269: 119086. DOI: 10.1016/j.lfs.2021.119086.
Li XM, Chen Z, Xiao EH, et al. Diagnostic value of gadobenate dimeglumine-enhanced hepatocyte-phase magnetic resonance imaging in evaluating hepatic fibrosis and hepatitis[J]. World J Gastroenterol, 2017, 23(17): 3133-3141. DOI: 10.3748/wjg.v23.i17.3133.
Taylor AJ, Salerno M, Dharmakumar R, et al. T1 mapping: basic techniques and clinical applications[J]. JACC Cardiovasc Imaging, 2016, 9(1): 67-81. DOI: 10.1016/j.jcmg.2015.11.005.
Xu XL, Feng F, Zhang T, et al. Value of T1 relaxation time and hepatocyte fraction through Gd-EOB-DTPA-enhanced MRI in evaluating stages of hepatic fibrosis[J]. Shandong Med J, 2021, 61(26): 10-14. DOI: 10.3969/j.issn.1002-266X.2021.26.003.
Haimerl M, Utpatel K, Verloh N, et al. Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis[J]. Sci Rep, 2017, 7: 41429. DOI: 10.1038/srep41429.
Marzola P, Maggioni F, Vicinanza E, et al. Evaluation of the hepatocyte-specific contrast agent gadobenate dimeglumine for MR imaging of acute hepatitis in a rat model[J]. J Magn Reson Imaging, 1997, 7(1): 147-152. DOI: 10.1002/jmri.1880070121.
Tanaka T, Nishida H, Mie K, et al. Assessment of hepatitis and fibrosis using Gd-EOB-DTPA MRI in dogs[J]. Vet Rec Open, 2020, 7(1): e000371. DOI: 10.1136/vetreco-2019-000371.
Yamada Y, Matsumoto S, Mori H, et al. Periportal lymphatic system on post-hepatobiliary phase Gd-EOB-DTPA-enhanced MR imaging in normal subjects and patients with chronic hepatitis C[J]. Abdom Radiol (NY), 2017, 42(10): 2410-2419. DOI: 10.1007/s00261-017-1155-y.
Li AQ, Wu J, Cheng J, et al. Gd-EOB-DTPA-enhanced MRI-a noninvasive and short-term assessment method for liver necroinflammation after direct-acting antiviral (DAA) therapy in patients with chronic hepatitis C[J]. Abdom Radiol (NY), 2022, 47(1): 174-183. DOI: 10.1007/s00261-021-03316-0.
Tschirch FTC, Struwe A, Petrowsky H, et al. Contrast-enhanced MR cholangiography with Gd-EOB-DTPA in patients with liver cirrhosis: visualization of the biliary ducts in comparison with patients with normal liver parenchyma[J]. Eur Radiol, 2008, 18(8): 1577-1586. DOI: 10.1007/s00330-008-0929-6.
Chen XD, Zhang YY, Xiong ML, et al. Gd-BOPTA-enhanced MRI evaluation of liver function in patients with cirrhosis[J]. Chin J Med Imaging Technol, 2020, 36(1): 96-101. DOI: 10.13929/j.issn.1003-3289.2020.01.028.
Yang M, Zhang Y, Zhao WL, et al. Evaluation of liver function using liver parenchyma, spleen and portal vein signal intensities during the hepatobiliary phase in Gd-EOB-D TPA-enhanced MRI[J]. BMC Med Imaging, 2020, 20(1): 119. DOI: 10.1186/s12880-020-00519-7.
Tamada T, Ito K, Higaki A, et al. Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers[J]. Eur J Radiol, 2011, 80(3): e311-e316. DOI: 10.1016/j.ejrad.2011.01.020.
Zhang WG, Wang X, Miao YH, et al. Liver function correlates with liver-to-portal vein contrast ratio during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MR at 3 Tesla[J]. Abdom Radiol (NY), 2018, 43(9): 2262-2269. DOI: 10.1007/s00261-018-1462-y.
Besa C, Bane O, Jajamovich G, et al. 3D T1 relaxometry pre and post gadoxetic acid injection for the assessment of liver cirrhosis and liver function[J]. Magn Reson Imaging, 2015, 33(9): 1075-1082. DOI: 10.1016/j.mri.2015.06.013.
Sandrasegaran K, Cui EM, Elkady R, et al. Can functional parameters from hepatobiliary phase of gadoxetate MRI predict clinical outcomes in patients with cirrhosis?[J]. Eur Radiol, 2018, 28(10): 4215-4224. DOI: 10.1007/s00330-018-5366-6.
Lu Y, Liu PF, Fu P, et al. Comparison of the DWI and Gd-EOB-DTPA-enhanced MRI on assessing the hepatic ischemia and reperfusion injury after partial hepatectomy[J]. Biomed Pharmacother, 2017, 86: 118-126. DOI: 10.1016/j.biopha.2016.11.123.
Getzin T, Gueler F, Hartleben B, et al. Gd-EOB-DTPA-enhanced MRI for quantitative assessment of liver organ damage after partial hepatic ischaemia reperfusion injury: correlation with histology and serum biomarkers of liver cell injury[J]. Eur Radiol, 2018, 28(10): 4455-4464. DOI: 10.1007/s00330-018-5380-8.
Gore JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68:A1-A4. DOI: 10.1016/j.mri.2019.12.006.
Geng DY. Application of artificial intelligence in imaging of central nervous system diseases[J]. Int J Med Radiol, 2021, 44(6): 621-624. DOI: 10.19300/j.2021.S19473.
董飞. MR影像组学和深度学习在胶质瘤术前诊断评估中的应用 [D]. 杭州: 浙江大学, 2019. DOI: 10.27461/d.cnki.gzjdx.2019.001331.
Elkilany A, Fehrenbach U, Auer TA, et al. A radiomics-based model to classify the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI[J]. Sci Rep, 2021, 11: 10778. DOI: 10.1038/s41598-021-90257-9.
Xiong LX, Fang QM, Li SH, et al. Value of radiomics of contrast-enhanced CT inprediction of early postoperative recurrence in hepatocellular carcinoma[J]. Radiol Pract, 2022, 37(4): 432-436. DOI: 10.13609/j.cnki.1000-0313.2022.04.004.
Choi JY, Kim H, Sun M, et al. Histogram analysis of hepatobiliary phase MR imaging as a quantitative value for liver cirrhosis: preliminary observations[J]. Yonsei Med J, 2014, 53(3): 651-659. DOI: 10.3349/ymj.2014.55.3.651.
Kim H, Park SH, Kim EK, et al. Histogram analysis of gadoxetic acid-enhanced MRI for quantitative hepatic fibrosis measurement[J]. PLoS One, 2014, 9(12): e114224. DOI: 10.1371/journal.pone.0114224.
Asayama Y, Nishie A, Ishigami K, et al. Histogram analysis of noncancerous liver parenchyma on gadoxetic acid-enhanced MRI: predictive value for liver function and pathology[J]. Abdom Radiol (NY), 2016, 41(9): 1751-1757. DOI: 10.1007/s00261-016-0753-4.
Park HJ, Lee SS, Park B, et al. Radiomics analysis of gadoxetic acid-enhanced MRI for staging liver fibrosis[J]. Radiology, 2019, 290(2): 380-387. DOI: 10.1148/radiol.2018181197.
Chan HP, Samala RK, Hadjiiski LM, et al. Deep learning in medical image analysis[J]. Adv Exp Med Biol, 2020, 1213: 3-21. DOI: 10.1007/978-3-030-33128-3_1.
Yasaka K, Akai H, Kunimatsu A, et al. Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images[J]. Radiology, 2018, 287(1): 146-155. DOI: 10.1148/radiol.2017171928.
Hectors SJ, Kennedy P, Huang KH, et al. Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2021, 31(6): 3805-3814. DOI: 10.1007/s00330-020-07475-4.

PREV Application and prospect of preoperativeMRI in predicting the prognosis of breast cancer
NEXT The application progress of artificial intelligence in gastric cancer imaging

Tel & Fax: +8610-67113815    E-mail: