Share:
Share this content in WeChat
X
Review
MRI research progress of vasogenic edema after traumatic brain injury
DING Xing  ZHANG Jing  CHEN Fen  CHEN Yang  ZHOU Changning  CHEN Kuntao 

Cite this article as: Ding X, Zhang J, Chen F, et al. MRI research progress of vasogenic edema after traumatic brain injury[J]. Chin J Magn Reson Imaging, 2022, 13(6): 143-146. DOI:10.12015/issn.1674-8034.2022.06.030.


[Abstract] Traumatic brain injury (TBI) is a common life-threatening disease, while cerebral edema is the main factor affecting the mortality and subsequent functional recovery of TBI. Different types of edema usually require different clinical treatments, and vasogenic edema is the main form. Conventional magnetic resonance sequences are limited in their ability to identify the type and extent of edema. With the increasing innovation of MRI functional sequences, various functional magnetic resonance imaging (fMRI) studies have their own unique characteristics in the study of vasogenic brain edema after TBI. Relevant studies have applied fMRI sequences such as diffusion weighted imaging, diffusion tensor imaging, free water diffusion tensor imaging and diffusion kurtosis imaging, and achieved satisfactory results. Other fMRIs, such as magnetization transfer and susceptibility imaging, have also shown their due role in this field. This article concludes and summarizes the MRI research progress of vasogenic brain edema after TBI, in order to provide an updated and more comprehensive theoretical basis and examination methods for the prevention, treatment and prognosis of vasogenic brain edema after TBI.
[Keywords] traumatic brain injury;cerebral edema;vasogenic edema;magnetic resonance imaging;functional magnetic resonance imaging

DING Xing1, 2   ZHANG Jing1   CHEN Fen1, 2   CHEN Yang1, 2   ZHOU Changning1, 2   CHEN Kuntao1*  

1 Department of Radiology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519110, China

2 Second Clinical School, Zunyi Medical University, Zhuhai 519110, China

Chen KT, E-mail: chenkunt2021@163.com

Conflicts of interest   None.

Received  2022-03-29
Accepted  2022-05-27
DOI: 10.12015/issn.1674-8034.2022.06.030
Cite this article as: Ding X, Zhang J, Chen F, et al. MRI research progress of vasogenic edema after traumatic brain injury[J]. Chin J Magn Reson Imaging, 2022, 13(6): 143-146.DOI:10.12015/issn.1674-8034.2022.06.030

[1]
Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury[J]. Neurosurg, 2018, 130(4): 1080-1097. DOI: 10.3171/2017.10.jns17352.
[2]
Robinson CP. Moderate and Severe Traumatic Brain Injury[J]. Continuum (Minneap Minn), 2021, 27(5): 1278-1300. DOI: 10.1212/con.0000000000001036.
[3]
Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury[J]. Neuropharmacology, 2019, 145(Pt B): 230-246. DOI: 10.1016/j.neuropharm.2018.08.004.
[4]
Xu X, Gao W, Cheng S, et al. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury[J]. J Neuroinflammation, 2017, 14(1): 167. DOI: 10.1186/s12974-017-0934-2.
[5]
Jacotte-simancas A, Middleton JW, Stielper ZF, et al. Brain injury effects on neuronal activation and synaptic transmission in the basolateral amygdala of adult male and female wistar rats[J]. J Neurotrauma, 2022, 39(7-8):544-559. DOI: 10.1089/neu.2021.0270.
[6]
Karagianni MD, Brotis AG, Gatos C, et al. Neuromonitoring in severe traumatic brain injury: A bibliometric analysis[J]. Neurocrit Care, 2022, 36(3): 1044-1052. DOI: 10.1007/s12028-021-01428-5.
[7]
Xiong A, Xiong R, Yu J, et al. Aquaporin-4 is a potential drug target for traumatic brain injury via aggravating the severity of brain edema[J]. Burns Trauma, 2021, 9: tkaa050. DOI: 10.1093/burnst/tkaa050.
[8]
Wang H, Zhu X, Liao Z, et al. Novel-graded traumatic brain injury model in rats induced by closed head impacts[J]. Neuropathology, 2018, 38(5): 484-492. DOI: 10.1111/neup.12509.
[9]
Guo ZQ, Jiang H, Huang Y, et al. Early complementary acupuncture improves the clinical prognosis of traumatic brain edema: A randomized controlled trial[J]. Medicine (Baltimore), 2022, 101(8): e28959. DOI: 10.1097/md.0000000000028959.
[10]
Jha RM, Kochanek PM. A precision medicine approach to cerebral edema and intracranial hypertension after severe traumatic brain injury: Quo vadis?[J]. Curr Neurol Neurosci Rep, 2018, 18(12): 105. DOI: 10.1007/s11910-018-0912-9.
[11]
Liu YL, Yu QH, Wang C, et al. Classification and molecular mechanism of secondary cerebral edema after brain injury[J]. Chin J Phys Med Rehabil, 2021, 43(6): 567-570. DOI: 10.3760/cma.j.issn.0254-1424.2021.06.023.
[12]
Lu H, Zhan Y, Ai L, et al. AQP4-siRNA alleviates traumatic brain edema by altering post-traumatic AQP4 polarity reversal in TBI rats[J]. J Clin Neurosci, 2020, 81: 113-119. DOI: 10.1016/j.jocn.2020.09.015.
[13]
Zheng T, Du J, Yuan Y, et al. Effect of Low Intensity Transcranial Ultrasound (LITUS) on Post-traumatic brain edema in rats: Evaluation by Isotropic 3-Dimensional T2 and Multi-TE T2 Weighted MRI[J]. Front Neurol, 2020, 11: 578638. DOI: 10.3389/fneur.2020.578638.
[14]
Lee AL. Advanced imaging of traumatic brain injury[J]. Korean J Neurotrauma, 2020, 16(1): 3-17. DOI: 10.13004/kjnt.2020.16.e12.
[15]
Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research[J]. Lancet Neurol, 2017, 16(12): 987-1048. DOI: 10.1016/s1474-4422(17)30371-x.
[16]
Yu M, Wang M, Yang D, et al. Dynamics of blood brain barrier permeability and tissue microstructure following controlled cortical impact injury in rat: A dynamic contrast-enhanced magnetic resonance imaging and diffusion kurtosis imaging study[J]. Magn Reson Imaging, 2019, 62: 1-9. DOI: 10.1016/j.mri.2019.01.017.
[17]
Xu ZY, Yang ZX, Ding YY, et al. Dynamic enhanced MRI monitoring of blood-brain barrier permeability after traumatic brain injury[J]. J Clin Radiol, 2019, 38(10): 1976-1981. DOI: 10.13437/j.cnki.jcr.2019.10.043.
[18]
Martín-noguerol T, Mohan S, Santos-armentia E, et al. Advanced MRI assessment of non-enhancing peritumoral signal abnormality in brain lesions[J]. Eur J Radiol, 2021, 143: 109900. DOI: 10.1016/j.ejrad.2021.109900.
[19]
Blixt J, Gunnarson E, Wanecek M. Erythropoietin attenuates the brain edema response after. experimental traumatic brain injury[J]. J Neurotrauma, 2018, 35(4): 671-680. DOI: 10.1089/neu.2017.5015.
[20]
Obenaus A, Badaut J. Role of the noninvasive imaging techniques in monitoring and understanding the evolution of brain edema[J]. J Neurosci Res, 2022, 100(5): 1191-1200. DOI: 10.1002/jnr.24837.
[21]
Sun MC, Honey CR, Berk C, et al. Regulation of aquaporin-4 in a traumatic brain injury model in rats[J]. J Neurosurg, 2003, 98(3): 565-569. DOI: 10.3171/jns.2003.98.3.0565.
[22]
Marmarou CR, Liang X, Abidi NH, et al. Selective Vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury[J]. Brain Res, 2014, 1581: 89-102. DOI: 10.1016/j.brainres.2014.06.005.
[23]
Kulkarni P, Bhosle MR, Lu SF, et al. Evidence of early vasogenic edema following minor head impact that can be reduced with a vasopressin V1a receptor antagonist[J]. Brain Res Bull, 2020, 165: 218-227. DOI: 10.1016/j.brainresbull.2020.10.001.
[24]
Ren H, Lu H. Dynamic features of brain edema in rat models of traumatic brain injury[J]. Neuroreport, 2019, 30(9): 605-611. DOI: 10.1097/wnr.0000000000001213.
[25]
Turtzo LC, Luby M, Jikaria N, et al. Cytotoxic edema associated with hemorrhage predicts poor outcome after traumatic brain injury[J]. J Neurotrauma, 2021, 38(22): 3107-3118. DOI: 10.1089/neu.2021.0037.
[26]
Mistral T, Roca P, Maggia C, et al. Automated quantification of brain lesion volume from post-trauma MR Diffusion-Weighted Images[J]. Front Neurol, 2021, 12: 740603. DOI: 10.3389/fneur.2021.740603.
[27]
Pérez-bárcena J, Castaño-león AM, Gómez-abascal AL, et al. Dexamethasone for the treatment of traumatic brain injured patients with brain contusions and pericontusional edema: Study protocol for a prospective, randomized and double blind trial[J]. Medicine (Baltimore), 2021, 100(3): e24206. DOI: 10.1097/md.0000000000024206.
[28]
Hutchinson EB, Schwerin SC, Avram AV, et al. Diffusion MRI and the detection of alterations following traumatic brain injury[J]. J Neurosci Res, 2018, 96(4): 612-625. DOI: 10.1002/jnr.24065.
[29]
Vasiukova OR, Akhlebinina MI, Manzhurtsev AV, et al. The diffusion-tensor imaging reveals alterations in water diffusion parameters in acute pediatric concussion[J]. Acta Neurol Belg, 2021 , 121(6): 1463-1468. DOI: 10.1007/s13760-020-01347-w.
[30]
Soni N, Medeiros R, Alateeq K, et al. Diffusion tensor imaging detects acute pathology-specific changes in the P301L tauopathy mouse model following traumatic brain injury[J]. Front Neurosci, 2021, 15: 611451. DOI: 10.3389/fnins.2021.611451.
[31]
Lara M, Moll A, Mas A, et al. Use of diffusion tensor imaging to assess the vasogenic edema in traumatic pericontusional tissue[J]. Neurocirugia (Astur: Engl Ed), 2021, 32(4): 161-169. DOI: 10.1016/j.neucie.2020.05.001.
[32]
Niogi SN, Mukherjee P. Diffusion tensor imaging of mild traumatic brain injury[J]. J Head Trauma Rehabil, 2010, 25(4): 241-255. DOI: 10.1097/HTR.0b013e3181e52c2a.
[33]
Moll A, Lara M, Pomar J, et al. Effects of dexamethasone in traumatic brain injury patients with pericontusional vasogenic edema: A prospective-observational DTI-MRI study[J]. Medicine (Baltimore), 2020, 99(43): e22879. DOI: 10.1097/md.0000000000022879.
[34]
Wang H, Baker EW, Mandal A, et al. Identification of predictive MRI and functional biomarkers in a pediatric piglet traumatic brain injury model[J]. Neural Regen Res, 2021, 16(2): 338-344. DOI: 10.4103/1673-5374.290915.
[35]
Ye Z, Gary SE, Sun P, et al. The impact of edema and fiber crossing on diffusion MRI metrics assessed in an ex vivo nerve phantom: Multi-tensor model vs. diffusion orientation distribution function[J]. NMR Biomed, 2021, 34(1): e4414. DOI: 10.1002/nbm.4414.
[36]
Bergamino M, Walsh RR, Stokes AM. Free-water diffusion tensor imaging improves the accuracy and sensitivity of white matter analysis in Alzheimer's disease[J]. Sci Rep, 2021, 11(1): 6990. DOI: 10.1038/s41598-021-86505-7.
[37]
Guo JY, Lesh TA, Niendam TA, et al. Brain free water alterations in first-episode psychosis: a longitudinal analysis of diagnosis, course of illness, and medication effects[J]. Psychol Med, 2021, 51(6): 1001-1010. DOI: 10.1017/s0033291719003969.
[38]
Eisenberg HM, Shenton ME, Pasternak O, et al. Magnetic Resonance Imaging Pilot Study of Intravenous Glyburide in Traumatic Brain Injury[J]. J Neurotrauma, 2020, 37(1): 185-193. DOI: 10.1089/neu.2019.6538.
[39]
Vijayakumari AA, Parker D, Osmanlioglu Y, et al. Free water volume fraction: An imaging biomarker to characterize moderate-to-severe traumatic brain injury[J]. J Neurotrauma, 2021, 38(19): 2698-2705. DOI: 10.1089/neu.2021.0057.
[40]
Kamagata K, Andica C, Kato A, et al. Diffusion magnetic resonance imaging-based biomarkers for neurodegenerative diseases[J]. Int J Mol Sci, 2021, 22(10): 5216. DOI: 10.3390/ijms22105216.
[41]
Kato S, Hagiwara A, Yokoyama K, et al. Microstructural white matter abnormalities in multiple sclerosis and neuromyelitis optica spectrum disorders: Evaluation by advanced diffusion imaging[J]. J Neurol Sci, 2022, 436: 120205. DOI: 10.1016/j.jns.2022.120205.
[42]
Bergamino M, Keeling EG, Baxter LC, et al. Sex differences in Alzheimer's disease revealed by free-water diffusion tensor imaging and voxel-based morphometry[J]. J Alzheimers Dis, 2022, 85(1): 395-414. DOI: 10.3233/jad-210406.
[43]
Stenberg J, Eikenes L, Moen KG, et al. Acute diffusion tensor and kurtosis imaging and outcome following mild traumatic brain injury[J]. J Neurotrauma, 2021, 38(18): 2560-2571. DOI: 10.1089/neu.2021.0074.
[44]
Xiong JT, Wu JL, Zhang Q, et al. Dynamic and quantitative diffusion kurtosis imaging of rabbit mild traumatic brain injury models in early phase and the relationship with positive expression of β-amyloid precursor protein[J]. Chin J Med Imaging Technol, 2018, 34(9): 1312-1317. DOI: 10.13929/j.1003-3289.201708089.
[45]
Zheng T, Yuan Y, Yang H, et al. Evaluating the therapeutic effect of low-intensity transcranial ultrasound on traumatic brain injury with diffusion kurtosis imaging[J]. J Magn Reson Imaging, 2020, 52(2): 520-531. DOI: 10.1002/jmri.27063.
[46]
Karlsen RH, Einarsen C, Moe HK, et al. Diffusion kurtosis imaging in mild traumatic brain injury and postconcussional syndrome[J]. J Neurosci Res, 2019, 97(5): 568-581. DOI: 10.1002/jnr.24383.
[47]
Qiu J, Deng K, Wang P, et al. Application of diffusion kurtosis imaging to the study of edema in solid and peritumoral areas of glioma[J]. Magn Reson Imaging, 2022, 86: 10-16. DOI: 10.1016/j.mri.2021.11.001.
[48]
Morrison TR, Kulkarni P, Cai X, et al. Treating head injury using a novel vasopressin 1a receptor antagonist[J]. Neurosci Lett, 2020, 714: 134565. DOI: 10.1016/j.neulet.2019.134565.
[49]
McCunn P, Xu X, Moszczynski A, et al. Neurite orientation dispersion and density imaging in a rodent model of acute mild traumatic brain injury[J]. J Neuroimaging, 2021, 31(5): 879-892. DOI: 10.1111/jon.12917.
[50]
Zhang XD, Zhang LJ. Multimodal MR imaging in hepatic encephalopathy: state of the art[J]. Metab Brain Dis, 2018, 33(3): 661-671. DOI: 10.1007/s11011-018-0191-9.
[51]
Yang Y, Qu X, Huang Y, et al. Preliminary application of 3.0 T magnetic resonance chemical exchange saturation transfer imaging in brain metastasis of lung cancer[J]. BMC Med Imaging, 2020, 20(1): 4. DOI: 10.1186/s12880-019-0400-y.
[52]
Akbari H, Kazerooni AF, Ware JB, et al. Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging[J]. Sci Rep, 2021, 11(1): 15011. DOI: 10.1038/s41598-021-94560-3.
[53]
Badaut J, Adami A, Huang L, et al. Noninvasive magnetic resonance imaging stratifies injury. severity in a rodent model of male juvenile traumatic brain injury[J]. J Neurosci Res, 2020, 98(1): 129-140. DOI: 10.1002/jnr.24415.
[54]
Guan Y, Li L, Chen J, et al. Effect of AQP4-RNAi in treating traumatic brain edema: Multi-modal MRI and histopathological changes of early stage edema in a rat model[J]. Exp Ther Med, 2020, 19(3): 2029-2036. DOI: 10.3892/etm.2020.8456.

PREV Research progress in the application of chemical exchange saturation transfer imaging in glioma
NEXT Application and prospect of preoperativeMRI in predicting the prognosis of breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn