Share:
Share this content in WeChat
X
Review
Research progress in the application of chemical exchange saturation transfer imaging in glioma
ZHANG Lan  WANG Jing 

Cite this article as: Zhang L, Wang J. Research progress in the application of chemical exchange saturation transfer imaging in glioma[J]. Chin J Magn Reson Imaging, 2022, 13(6): 139-142. DOI:10.12015/issn.1674-8034.2022.06.029.


[Abstract] Glioma is the most common primary central nervous system tumor with strong invasiveness and poor prognosis. Its growth is accompanied by changes in the contents of protein, glutamic acid, amine and other substances. Chemical exchange saturation transfer (CEST) imaging is a novel and noninvasive MRI mechanism, relying on the exchange between the mobile protons in amide (-NH), amine (-NH2) and hydroxyl (-OH) and bulk water. It can reflect the changes of the mobile protons content in the protein or peptide and pH value in the tissue at the molecular level. It can detect and quantify changes within gliomas at the molecular level. In this article, the principle, the applications in the diagnosis and classification, grading, molecular typing prediction and response evaluation of gliomas and the shortcoming of CEST were reviewed.
[Keywords] glioma;chemical exchange saturation transfer;magnetic resonance imaging;grading;molecular typing prediction;response evaluation

ZHANG Lan1, 2   WANG Jing1, 2*  

1 Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

2 Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China

Wang J, E-mail: xhwangjing@hust.edu.cn

Conflicts of interest   None.

Received  2022-03-10
Accepted  2022-04-24
DOI: 10.12015/issn.1674-8034.2022.06.029
Cite this article as: Zhang L, Wang J. Research progress in the application of chemical exchange saturation transfer imaging in glioma[J]. Chin J Magn Reson Imaging, 2022, 13(6): 139-142.DOI:10.12015/issn.1674-8034.2022.06.029

[1]
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956.
[2]
Dou W, Lin CE, Ding H, et al. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies[J]. Quant Imaging Med Surg, 2019, 9(10): 1747-1766. DOI: 10.21037/qims.2019.10.03.
[3]
Yan S, Li ML, Jing ZY. Principle and application progress of chemical exchange saturation transfer (CEST) technique. Chin J Magn Reson Imaging[J]. 2016, 7(4): 241-248. DOI: 10.12015/issn.1674-8034.2016.04.001.
[4]
Zhou J, Lal B, Wilson DA, et al. Amide proton transfer (APT) contrast for imaging of brain tumors[J]. Magn Reson Med, 2003, 50(6): 1120-1126. DOI: 10.1002/mrm.10651.
[5]
Wen Z, Hu S, Huang F, et al. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast[J]. NeuroImage, 2010, 51(2): 616-622. DOI: 10.1016/j.neuroimage.2010.02.050.
[6]
Neal A, Moffat BA, Stein JM, et al. Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging[J]. Neuroimage Clin, 2019, 22: 101694. DOI: 10.1016/j.nicl.2019.101694.
[7]
Zhu ZJ, Ma HJ, Shen YY, et al. A study on the imaging of brain tumor using glutamate chemical exchange saturation transfer (GluCEST)[J]. Funct Mol Med Imaging (Electronic Edition), 2017, 6(4): 1295-1301. DOI: 10.3969/j.issn.2095-2252.2017.04.002.
[8]
Warnert EAH, Wood TC, Incekara F, et al. Mapping tumour heterogeneity with pulsed 3D CEST MRI in non-enhancing glioma at 3 T[J]. MAGMA, 2022, 35(1): 53-62. DOI: 10.1007/s10334-021-00911-6.
[9]
Wu Y, Wood TC, Arzanforoosh F, et al. 3D APT and NOE CEST-MRI of healthy volunteers and patients with non-enhancing glioma at 3 T[J]. MAGMA, 2022, 35(1): 63-73. DOI: 10.1007/s10334-021-00996-z.
[10]
Li XB, Song YK, Zhu XL, et al. Diagnostic efficacy of amide proton transfer MRI in the grading of gliomas and predicting tumor cell proliferation[J]. Radiol Practice, 2017, 32(4): 355-359. DOI: 10.13609/j.cnki.1000-0313.2017.04.013.
[11]
Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2014, 16(3): 441-448. DOI: 10.1093/neuonc/not158.
[12]
Park JE, Kim HS, Park KJ, et al. Histogram Analysis of Amide Proton Transfer Imaging to Identify Contrast-enhancing Low-Grade Brain Tumor That Mimics High-Grade Tumor: Increased Accuracy of MR Perfusion[J]. Radiology, 2015, 277(1): 151-161. DOI: 10.1148/radiol.2015142347.
[13]
Zhang H, Yong X, Ma X, et al. Differentiation of low- and high-grade pediatric gliomas with amide proton transfer imaging: added value beyond quantitative relaxation times[J]. Eur Radiol, 2021, 31(12): 9110-9119. DOI: 10.1007/s00330-021-08039-w.
[14]
Xu Z, Ke C, Liu J, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T[J]. Eur J Radiol, 2021, 134: 109466. DOI: 10.1016/j.ejrad.2020.109466.
[15]
Su C, Xu S, Lin D, et al. Multi-parametric Z-spectral MRI may have a good performance for glioma stratification in clinical patients[J]. Eur Radiol, 2022, 32(1): 101-111. DOI: 10.1016/j.ejrad.2020.109466.
[16]
Jiang S, Yu H, Wang X, et al. Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla[J]. Eur Radiol, 2016, 26(1): 64-71. DOI: 10.1007/s00330-015-3805-1.
[17]
Yu H, Lou H, Zou T, et al. Applying protein-based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma[J]. European radiology, 2017, 27(11): 4516-4524. DOI: 10.1007/s00330-017-4867-z.
[18]
Kamimura K, Nakajo M, Yoneyama T, et al. Histogram analysis of amide proton transfer-weighted imaging: comparison of glioblastoma and solitary brain metastasis in enhancing tumors and peritumoral regions[J]. Eur Radiol, 2019, 29(8): 4133-4140. DOI: 10.1007/s00330-018-5832-1.
[19]
Lingl JP, Wunderlich A, Goerke S, et al. The Value of APTw CEST MRI in Routine Clinical Assessment of Human Brain Tumor Patients at 3 T[J]. Diagnostics (Basel), 2022, 12(2): 490. DOI: 10.3390/diagnostics12020490.
[20]
Sartoretti E, Sartoretti T, Wyss M, et al. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases[J]. Sci Rep, 2021, 11(1): 5506. DOI: 10.1038/s41598-021-85168-8.
[21]
Debnath A, Gupta RK, Singh A. Evaluating the Role of Amide Proton Transfer (APT)-Weighted Contrast, Optimized for Normalization and Region of Interest Selection, in Differentiation of Neoplastic and Infective Mass Lesions on 3 T MRI[J]. Mol Imaging Biol, 2020, 22(2): 384-396. DOI: 10.1007/s11307-019-01382-x.
[22]
Shen JQ, Zhang JX, Gan TH, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Radiol Practice, 2021, 36(7): 818-831. DOI: 10.13609/j.cnki.1000-0313.2021.07.001.
[23]
Yao J, Hagiwara A, Raymond C, et al. Human IDH mutant 1p/19q co-deleted gliomas have low tumor acidity as evidenced by molecular MRI and PET: a retrospective study[J]. Sci Rep, 2020, 10(1): 11922. DOI: 10.1038/s41598-020-68733-5.
[24]
Jiang S, Rui Q, Wang Y, et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics[J]. Eur Radiol, 2018, 28(5): 2115-2123. DOI: 10.1007/s00330-017-5182-4.
[25]
Zhuo Z, Qu L, Zhang P, et al. Prediction of H3K27M-mutant brainstem glioma by amide proton transfer-weighted imaging and its derived radiomics[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4426-4436. DOI: 10.1007/s00259-021-05455-4.
[26]
Paech D, Windschuh J, Oberhollenzer J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T[J]. Neuro Oncol, 2018, 20(12): 1661-1671. DOI: 10.1093/neuonc/noy073.
[27]
Yao J, Chakhoyan A, Nathanson DA, et al. Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH- and oxygen-sensitive molecular MRI[J]. Neuro Oncol, 2019, 21(9): 1184-1196. DOI: 10.1093/neuonc/noz078.
[28]
Mancini L, Casagranda S, Gautier G, et al. CEST MRI provides amide/amine surrogate biomarkers for treatment-naive glioma sub-typing[J]. Eur J Nucl Med Mol Imaging, 2022, 49(7):2377-2391. DOI: 10.1007/s00259-022-05798-6.
[29]
Hagiwara A, Yao J, Raymond C, et al. "Aerobic glycolytic imaging" of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging[J]. Neuroimage Clin, 2021, 32: 102882. DOI: 10.1016/j.nicl.2021.102882.
[30]
Joo B, Han K, Ahn SS, et al. Amide proton transfer imaging might predict survival and IDH mutation status in high-grade glioma[J]. Eur Radiol, 2019, 29(12): 6643-6652. DOI: 10.1007/s00330-019-06203-x.
[31]
Paech D, Dreher C, Regnery S, et al. Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients[J]. Eur Radiol, 2019, 29(9): 4957-4967. DOI: 10.1007/s00330-019-06066-2.
[32]
Chawla S, Bukhari S, Afridi OM, et al. Metabolic and Physiologic MR Imaging in Distinguishing True Progression from Pseudoprogression in Patients with Glioblastoma[J]. NMR Biomed, 2022: e4719. DOI: 10.1002/nbm.4719.
[33]
Mehrabian H, Myrehaug S, Soliman H, et al. Evaluation of Glioblastoma Response to Therapy With Chemical Exchange Saturation Transfer[J]. Int J Radiat Oncol Biol Phys, 2018, 101(3): 713-723. DOI: 10.1016/j.ijrobp.2018.03.057.
[34]
Meissner JE, Korzowski A, Regnery S, et al. Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T[J]. J Magn Reson Imaging, 2019, 50(4): 1268-1277. DOI: 10.1002/jmri.26702.
[35]
Yao J, Tan CHP, Schlossman J, et al. pH-weighted amine chemical exchange saturation transfer echoplanar imaging (CEST-EPI) as a potential early biomarker for bevacizumab failure in recurrent glioblastoma[J]. J Neurooncol, 2019, 142(3): 587-595. DOI: 10.1007/s11060-019-03132-z.
[36]
Su CL, Zhang JX, Zhang S, et al. Application of amide proton transfer imaging in differenting glioma from treatment effect[J]. Chin J Nucl Med Mol Imaging, 2017, 37(6): 337-341. DOI: 10.3760/cma.j.issn.2095-2848.2017.06.004.
[37]
Park YW, Ahn SS, Kim EH, et al. Differentiation of recurrent diffuse glioma from treatment-induced change using amide proton transfer imaging: incremental value to diffusion and perfusion parameters[J]. Neuroradiology, 2021, 63(3): 363-372. DOI: 10.1007/s00234-020-02542-5.
[38]
Park KJ, Kim HS, Park JE, et al. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma[J]. Eur Radiol, 2016, 26(12): 4390-4403. DOI: 10.1007/s00330-016-4261-2.
[39]
Paprottka KJ, Kleiner S, Preibisch C, et al. Fully automated analysis combining [(18)F]-FET-PET and multiparametric MRI including DSC perfusion and APTw imaging: a promising tool for objective evaluation of glioma progression[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4445-4455. DOI: 10.1007/s00259-021-05427-8.
[40]
Huang J, Chen Z, Park SW, et al. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges[J]. Pharmaceutics, 2022, 14(2): 451. DOI: 10.3390/pharmaceutics14020451.
[41]
Bender B, Herz K, Deshmane A, et al. GLINT: GlucoCEST in neoplastic tumors at 3 T-clinical results of GlucoCEST in gliomas[J]. MAGMA, 2022, 35(1): 77-85. DOI: 10.1007/s10334-021-00982-5.
[42]
Qi Q, Fox MS, Lim H, et al. Multimodality In Vivo Imaging of Perfusion and Glycolysis in a Rat Model of C6 Glioma[J]. Mol Imaging Biol, 2021, 23(4): 516-526. DOI: 10.1007/s11307-021-01585-1.
[43]
Sehgal AA, Li Y, Lal B, et al. CEST MRI of 3-O-methyl-D-glucose uptake and accumulation in brain tumors[J]. Magn Reson Med, 2019, 81(3): 1993-2000. DOI: 10.1002/mrm.27489.
[44]
Zhang J, Yuan Y, Gao M, et al. Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents[J]. Angew Chem Inter Ed Engl, 2019, 58(29): 9871-9875. DOI: 10.1002/anie.201904722.
[45]
Vanherp L, Govaerts K, Riva M, et al. CryptoCEST: A promising tool for spatially resolved identification of fungal brain lesions and their differentiation from brain tumors with MRI[J]. Neuroimage Clin, 2021, 31: 102737. DOI: 10.1016/j.nicl.2021.102737.
[46]
Han X, Huang J, To AKW, et al. CEST MRI detectable liposomal hydrogels for multiparametric monitoring in the brain at 3 T[J]. Theranostics, 2020, 10(5): 2215-2228. DOI: 10.7150/thno.40146.
[47]
Chan RW, Chen H, Myrehaug S, et al. Quantitative CEST and MT at 1.5T for monitoring treatment response in glioblastoma: early and late tumor progression during chemoradiation[J]. J Neurooncol, 2021, 151(2): 267-278. DOI: 10.1007/s11060-020-03661-y.
[48]
Heo HY, Zhang Y, Lee DH, et al. Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques[J]. Magn Reson Med, 2017, 77(2): 779-786. DOI: 10.1002/mrm.26141.
[49]
Goerke S, Breitling J, Korzowski A, et al. Clinical routine acquisition protocol for 3D relaxation-compensated APT and rNOE CEST-MRI of the human brain at 3 T[J]. Magn Reson Med, 2021, 86(1): 393-404. DOI: 10.1002/mrm.28699.
[50]
Schure JR, Pilatus U, Deichmann R, et al. A fast and novel method for amide proton transfer-chemical exchange saturation transfer multislice imaging[J]. NMR Biomed, 2021, 34(7): e4524. DOI: 10.1002/nbm.4524.

PREV Research progress of multimodal MRI and radiomics in evaluation of Parkinson,s disease with depression
NEXT MRI research progress of vasogenic edema after traumatic brain injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn