Share this content in WeChat
Research progress of multimodal MRI and radiomics in evaluation of Parkinson's disease with depression
XIE Guoqing  WU Kunhua  BI Qiu  GONG Xiarong  LI Qingrui 

Cite this article as: Xie GQ, Wu KH, Bi Q, et al. Research progress of multimodal MRI and radiomics in evaluation of Parkinson's disease with depression[J]. Chin J Magn Reson Imaging, 2022, 13(6): 135-138. DOI:10.12015/issn.1674-8034.2022.06.028.

[Abstract] Depression is a common type of non-motor symptoms in Parkinson's disease (PD). PD with depression (DPD) can aggravate motor and cognitive dysfunction, and lead to poor prognosis. Therefore, for the early diagnosis and timely intervention of DPD, there is a great significance to improve the condition and alleviate the deterioration of other symptoms. Unfortunately, the symptoms of DPD are easy to overlap with other symptoms of PD, which is difficult to find in the process of clinical diagnosis and treatment. These imaging techniques such as voxel-based morphometry (VBM), resting-state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), diffusion spectrum imaging (DSI), and high angular resolution diffusion imaging (HARDI) can objectively show not only changes in the structure but also functional of the central nervous system. In addition, the imaging characteristics of lesions can be extracted by radiomics to improve the accuracy of diagnosis and differential diagnosis. Therefore, this paper reviews the research progress of multimodal MRI and radiomics in DPD in recent years.
[Keywords] magnetic resonance imaging;Parkinson's disease;depression;voxel-based morphometry;resting-state functional magnetic resonance imaging;diffusion tensor imaging;high angular resolution diffusion imaging;radiomics

XIE Guoqing1   WU Kunhua2*   BI Qiu2   GONG Xiarong2   LI Qingrui1  

1 College of Medicine, Kunming University of Science and Technology, Kunming 650000, China

2 Department of MRI, the First People's Hospital of Yunnan Province (the Affiliated Hospital of Kunming University of Science and Technology), Kunming 650032, China

Wu KH, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Key Research and Development Plan of China (No. 2018YFA0801403);Yunnan Health Training Project of High Level Talents (No. H-2019070).
Received  2021-11-16
Accepted  2022-05-18
DOI: 10.12015/issn.1674-8034.2022.06.028
Cite this article as: Xie GQ, Wu KH, Bi Q, et al. Research progress of multimodal MRI and radiomics in evaluation of Parkinson's disease with depression[J]. Chin J Magn Reson Imaging, 2022, 13(6): 135-138. DOI:10.12015/issn.1674-8034.2022.06.028.

Lachner C, Armstrong MJ, Gruber-Baldini AL, et al. Discordance Between Physician Assessment and Patient-Reported Depressive Symptoms in Parkinson Disease[J]. J Geriatr Psychiatry Neurol, 2017, 30(4): 191-195. DOI: 10.1177/0891988717710335.
Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease[J]. Nat Rev Neurosci, 2017, 18 (7): 435-450. DOI: 10.1038/nrn.2017.62.
Marinus J, Zhu K, Marras C, et al. Risk factors for non-motor symptoms in Parkinson's disease[J]. Lancet Neurol, 2018, 17(6): 559-568. DOI: 10.1016/S1474-4422(18)30127-3.
Ryan M, Eatmon CV, Slevin JT. Drug treatment strategies for depression in Parkinson disease[J]. Expert Opin Pharmacother, 2019, 20(11): 1351-1363. DOI: 10.1080/14656566.2019.1612877.
Zhu J, Zhong M, Yan J, et al. Depressive symptoms effect subjective sleep quality in Chinese patients with Parkinson's disease[J]. Clin Neurol Neurosurg, 2020, 195: 105950. DOI: 10.1016/j.clineuro.2020.105950.
Sklerov M, Shih CH, Browner N, et al. Longitudinal change in autonomic symptoms predicts activities of daily living and depression in Parkinson's disease[J]. Clin Auton Res, 2020, 30(3): 223-230. DOI: 10.1007/s10286-020-00672-7.
Postuma RB, Berg D. Prodromal Parkinson's Disease: The Decade Past, the Decade to Come[J]. Mov Disord, 2019, 34(5): 665-675. DOI: 10.1002/mds.27670.
Liang P, Deshpande G, Zhao S, et al. Altered directional connectivity between emotion network and motor network in Parkinson's disease with depression[J]. Medicine (Baltimore), 2016, 95(30): e4222. DOI: 10.1097/MD.0000000000004222.
Huang P, Lou Y, Xuan M, et al. Cortical abnormalities in Parkinson's disease patients and relationship to depression: A surface-based morphometry study[J]. Psychiatry Res Neuroimaging, 2016, 250: 24-28. DOI: 10.1016/j.pscychresns.2016.03.002.
Deng X, Tang CY, Zhang J, et al. The cortical thickness correlates of clinical manifestations in the mid-stage sporadic Parkinson's disease[J]. Neurosci Lett, 2016, 633: 279-289. DOI: 10.1016/j.neulet.2016.09.042.
Chagas MHN, Tumas V, Pena-Pereira MA, et al. Neuroimaging of major depression in Parkinson's disease: Cortical thickness, cortical and subcortical volume, and spectroscopy findings[J]. J Psychiatr Res, 2017, 90: 40-45. DOI: 10.1016/j.jpsychires.2017.02.010.
Li Y, Huang P, Guo T, et al. Brain structural correlates of depressive symptoms in Parkinson's disease patients at different disease stage[J]. Psychiatry Res Neuroimaging, 2020, 296: 111029. DOI: 10.1016/j.pscychresns.2019.111029.
Cai Y, Li WH, Li ZX, et al. The characteristics of brain function activity between patients with bipolar depression and major depressive disorder: a functional magnetic resonance imaging study of affective pictures task[J]. Chin J Psychiatry, 2016, 49(4): 202-209. DOI: 10.3760/cma.j.issn.1006-7884.2016.04.003.
Luo C, Chen Q, Song W, et al. Resting-state fMRI study on drug-naive patients with Parkinson's disease and with depression[J]. J Neurol Neurosurg Psychiatry, 2014, 85(6): 675-683. DOI: 10.1136/jnnp-2013-306237.
Qiu YH, Nie K, Gao YY, et al. Regional homogeneity in the patients of Parkinson disease with depression: a resting-state functional magnetic resonance imaging study[J]. Chin J Nerv Ment Dis, 2020, 46(4): 202-209. DOI: 10.3969/j.issn.1002-0152.2020.04.003.
Li K, Zhao H, Li CM, et al. The Relationship between Side of Onset and Cerebral Regional Homogeneity in Parkinson's Disease: A Resting-State fMRI Study[J]. Parkinsons Dis, 2020, 2020: 5146253. DOI: 10.1155/2020/5146253.
Chen Y, Yu CX. Static and dynamic functional connectivity analysis based on resting state functional magnetic resonance imaging and its progress[J]. Chin J Magn Reson Imaging, 2019, 10(8): 637-640. DOI: 10.12015/issn.1674-8034.2019.08.017.
Prange S, Metereau E, Maillet A, et al. Early limbic microstructural alterations in apathy and depression in de novo Parkinson's disease[J]. Mov Disord, 2019, 34(11): 1644-1654. DOI: 10.1002/mds.27793.
Wei L, Hu X, Yuan Y, et al. Abnormal ventral tegmental area-anterior cingulate cortex connectivity in Parkinson's disease with depression[J]. Behav Brain Res, 2018, 347: 132-139. DOI: 10.1016/j.bbr.2018.03.011.
Guo T, Guan X, Zhou C, et al. Clinically relevant connectivity features define three subtypes of Parkinson's disease patients[J]. Hum Brain Mapp, 2020, 41(14): 4077-4092. DOI: 10.1002/hbm.25110.
Assogna F, Pellicano C, Savini C, et al. Drug Choices and Advancements for Managing Depression in Parkinson's Disease[J]. Curr Neuropharmacol, 2020, 18(4): 277-287. DOI: 10.2174/1570159x17666191016094857.
Qiu YH, Huang ZH, Gao YY, et al. Alterations in intrinsic functional networks in Parkinson's disease patients with depression: A resting-state functional magnetic resonance imaging study[J]. CNS Neurosci Ther, 2021, 27(3): 289-298. DOI: 10.1111/cns.13467.
Qian L, Zhang Y, Zheng L, et al. Frequency specific brain networks in Parkinson's disease and comorbid depression[J]. Brain Imaging Behav, 2017, 11(1): 224-239. DOI: 10.1007/s11682-016-9514-9.
Lin H, Cai X, Zhang D, et al. Functional connectivity markers of depression in advanced Parkinson's disease[J]. Neuroimage Clin, 2020, 25: 102130. DOI: 10.1016/j.nicl.2019.102130.
Yeshurun Y, Nguyen M, Hasson U. The default mode network: where the idiosyncratic self meets the shared social world[J]. Nat Rev Neurosci, 2021, 22(3): 181-192. DOI: 10.1038/s41583-020-00420-w.
Smallwood J, Bernhardt BC, Leech R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
Wei L, Hu X, Zhu Y, et al. Aberrant Intra- and Internetwork Functional Connectivity in Depressed Parkinson's Disease[J]. Sci Rep, 2017, 7(1): 2568. DOI: 10.1038/s41598-017-02127-y.
Zhu Y, Song X, Xu M, et al. Impaired interhemispheric synchrony in Parkinson's disease with depression[J]. Sci Rep, 2016, 6: 27477. DOI: 10.1038/srep27477.
Hillary FG, Roman CA, Venkatesan U, et al. Hyperconnectivity is a fundamental response to neurological disruption[J]. Neuropsychology, 2015, 29(1): 59-75. DOI: 10.1037/neu0000110.
Lu GM, Zhang ZQ. Clinical translation of central nervous system fMRI: challenges and promises[J]. Chin J Contemp Neurol Neurosurg, 2018, 18(3): 153-155. DOI: 10.3969/j.issn.1672-6731.2018.03.001.
Atkinson-Clement C, Pinto S, Eusebio A, et al. Diffusion tensor imaging in Parkinson's disease: Review and meta-analysis[J]. Neuroimage Clin, 2017, 16: 98-110. DOI: 10.1016/j.nicl.2017.07.011.
Li Z, Liu W, Xiao C, et al. Abnormal white matter microstructures in Parkinson's disease and comorbid depression: A whole-brain diffusion tensor imaging study[J]. Neurosci Lett, 2020, 735: 135238. DOI: 10.1016/j.neulet.2020.135238.
Wu JY, Zhang Y, Wu WB, et al. Impaired long contact white matter fibers integrity is related to depression in Parkinson's disease[J]. CNS Neurosci Ther, 2018, 24(2): 108-114. DOI: 10.1111/cns.12778.
Hu X, Qian L, Zhang Y, et al. Topological changes in white matter connectivity network in patients with Parkinson's disease and depression[J]. Brain Imaging Behav, 2020, 14(6): 2559-2568. DOI: 10.1007/s11682-019-00208-2.
Jeurissen B, Leemans A, Tournier JD, et al. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging[J]. Hum Brain Mapp, 2013, 34(11): 2747-2766. DOI: 10.1002/hbm.22099.
Glenn GR, Kuo LW, Chao YP, et al. Mapping the Orientation of White Matter Fiber Bundles: A Comparative Study of Diffusion Tensor Imaging, Diffusional Kurtosis Imaging, and Diffusion Spectrum Imaging[J]. AJNR Am J Neuroradiol, 2016, 37(7): 1216-1222. DOI: 10.3174/ajnr.A4714.
Wen MC, Thiery A, Tseng WI, et al. Apathy is associated with white matter network disruption and specific cognitive deficits in Parkinson's disease. Psychol Med, 2022, 52(2): 264-273. DOI: 10.1017/S0033291720001907.
Tuch DS, Reese TG, Wiegell MR, et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity[J]. Magn Reson Med, 2002, 48(4): 577-582. DOI: 10.1002/mrm.10268.
Hanganu A, Houde JC, Fonov VS, et al. White matter degeneration profile in the cognitive cortico-subcortical tracts in Parkinson's disease[J]. Mov Disord, 2018, 33(7): 1139-1150. DOI: 10.1002/mds.27364.
Sanjari Moghaddam H, Dolatshahi M, Salardini E, et al. Association of olfaction dysfunction with brain microstructure in prodromal Parkinson disease[J]. Neurol Sci, 2019, 40(2): 283-291. DOI: 10.1007/s10072-018-3629-2.
Ghazi Sherbaf F, Same K, Aarabi MH. High angular resolution diffusion imaging correlates of depression in Parkinson's disease: a connectometry study[J]. Acta Neurol Belg, 2018, 118(4): 573-579. DOI: 10.1007/s13760-018-0937-5.
Smits M. MRI biomarkers in neuro-oncology[J]. Nat Rev Neurol, 2021, 17(8): 486-500. DOI: 10.1038/s41582-021-00510-y.
Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
Yi Z, Long L, Zeng Y, et al. Current Advances and Challenges in Radiomics of Brain Tumors. Front Oncol, 2021, 11: 732196. DOI: 10.3389/fonc.2021.732196.
Zhang X, Cao X, Xue C, et al. Aberrant functional connectivity and activity in Parkinson's disease and comorbidity with depression based on radiomic analysis[J]. Brain Behav, 2021, 11(5): e02103. DOI: 10.1002/brb3.2103.
Tupe-Waghmare P, Rajan A, Prasad S, et al. Radiomics on routine T1-weighted MRI can delineate Parkinson's disease from multiple system atrophy and progressive supranuclear palsy[J]. Eur Radiol, 2021, 31(11): 8218-8227. DOI: 10.1007/s00330-021-07979-7.
Salmanpour MR, Shamsaei M, Saberi A, et al. Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning[J]. Comput Biol Med, 2021, 129: 104142. DOI: 10.1016/j.compbiomed.2020.104142.
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
Rocca WA. The burden of Parkinson's disease: a worldwide perspective [J]. Lancet Neurol, 2018, 17(11): 928-929. DOI: 10.1016/S1474-4422(18)30355-7.

PREV Research progress of MRI radiomics in mild cognitive impairment
NEXT Research progress in the application of chemical exchange saturation transfer imaging in glioma

Tel & Fax: +8610-67113815    E-mail: