Share:
Share this content in WeChat
X
Experience Exchang
A comparison of the Kaiser score and apparent diffusion coefficient mapping in the assessment of breast lesions
PAN Jialing  LI Xiaohong  CHEN Xinjie  DENG Lingda  DU Yongxing  CHEN Haixiong  YANG Shaomin  HU Qiugen  GUO Baoliang 

Cite this article as: Pan JL, Li XH, Chen XJ, et al. A comparison of the Kaiser score and apparent diffusion coefficient mapping in the assessment of breast lesions[J]. Chin J Magn Reson Imaging, 2022, 13(6): 108-111, 116. DOI:10.12015/issn.1674-8034.2022.06.021.


[Abstract] Objective To compare the diagnostic performance of Kaiser score with apparent diffusion coefficient (ADC) to distinguish benign from breast malignant lesions and to assess the potential of those approaches to avoid unnecessary biopsies.Materials and Methods This retrospective study enrolled 127 patients with 134 lesions (7 patients had 2 lesions) undergoing breast MRI from January 2019 to September 2021. KS+ score was calculated by combining ADC and Kaiser score. With pathological results as the gold standard, the area under the receiver operating characteristics curve (AUC) was calculated and compared between Kaiser score, ADC and KS+ score through Delong Test. Sensitivity and specificity were calculated and compared between them through McNemar Test.Results The AUC of Kaiser score (0.917) was significantly different from that of ADC (0.812) (P=0.0404), and the largest difference was found in non-mass lesions. There were statistically significant differences in specificity between Kaiser score (0.809) and ADC (0.426) (P=0.0215), but no difference in sensitivity between Kaiser score (0.954) and ADC (0.977) (P=0.6875). There were no differences between the AUC (0.917)、sensitivity (0.954) and specificity (0.809) of the Kaiser score and the AUC (0.914)、sensitivity (0.943) and specificity (0.830) of the KS+ score (P>0.05).Conclusions Kaiser score is superior to ADC in distinguishing benign from malignant breast lesions, especially in non-mass enhancement lesions. Kaiser score also performs better in avoiding unnecessary biopsies compared with ADC. The combination of the Kaiser score and ADC does not contribute to the diagnosis of breast cancer.
[Keywords] breast;magnetic resonance imaging;Kaiser score;apparent diffusion coefficient

PAN Jialing1   LI Xiaohong1   CHEN Xinjie1   DENG Lingda1   DU Yongxing1   CHEN Haixiong1   YANG Shaomin1, 2   HU Qiugen1   GUO Baoliang1*  

1 Department of Radiology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528300 ,China

2 Department of Radiology, Shunde Hospital affiliated to Guangzhou Medical University (YueCong Hospital of Shunde, Foshan), Foshan 528300, China

Guo BL, E-mail: tomcatccks@163.com

Conflicts of interest   None.

Received  2022-01-30
Accepted  2022-05-23
DOI: 10.12015/issn.1674-8034.2022.06.021
Cite this article as: Pan JL, Li XH, Chen XJ, et al. A comparison of the Kaiser score and apparent diffusion coefficient mapping in the assessment of breast lesions[J]. Chin J Magn Reson Imaging, 2022, 13(6): 108-111, 116.DOI:10.12015/issn.1674-8034.2022.06.021

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
[3]
Froelich MF, Kaiser CG. Cost-effectiveness of MR-mammography as a solitary imaging technique in women with dense breasts: an economic evaluation of the prospective TK-Study[J]. Eur Radiol, 2021, 31(2): 967-974. DOI: 10.1007/s00330-020-07129-5.
[4]
Cozzi A, Magni V, Zanardo M, et al. Contrast-enhanced mammography: a systematic review and meta-analysis of diagnostic performance[J]. Radiology, 2022, 302(3): 568-581. DOI: 10.1148/radiol.211412.
[5]
Mann RM, Cho N, Moy L. Breast MRI: state of the art[J]. Radiology, 2019, 292(3): 520-536. DOI: 10.1148/radiol.2019182947.
[6]
Lunkiewicz M, Forte S, Freiwald B, et al. Interobserver variability and likelihood of malignancy for fifth edition BI-RADS MRI descriptors in non-mass breast lesions[J]. Eur Radiol, 2020, 30(1): 77-86. DOI: 10.1007/s00330-019-06312-7.
[7]
El Khoury M, Lalonde L, David J, et al. Breast imaging reporting and data system (BI-RADS) lexicon for breast MRI: interobserver variability in the description and assignment of BI-RADS category[J]. Eur J Radiol, 2015, 84(1): 71-76. DOI: 10.1016/j.ejrad.2014.10.003.
[8]
Grimm LJ, Anderson AL, Baker JA, et al. Interobserver variability between breast imagers using the fifth edition of the BI-RADS MRI lexicon[J]. AJR Am J Roentgenol, 2015, 204(5): 1120-1124. DOI: 10.2214/AJR.14.13047.
[9]
Baltzer PAT, Dietzel M, Kaiser WA. A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography[J]. Eur Radiol, 2013, 23(8): 2051-2060. DOI: 10.1007/s00330-013-2804-3.
[10]
Dietzel M, Baltzer PAT. How to use the Kaiser score as a clinical decision rule for diagnosis in multiparametric breast MRI: a pictorial essay[J]. Insights Imaging, 2018, 9(3): 325-335. DOI: 10.1007/s13244-018-0611-8.
[11]
Iima M, Honda M, Sigmund EE, et al. Diffusion MRI of the breast: current status and future directions[J]. J Magn Reson Imaging, 2020, 52(1): 70-90. DOI: 10.1002/jmri.26908.
[12]
Baltzer P, Mann RM, Iima M, et al. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group[J]. Eur Radiol, 2020, 30(3): 1436-1450. DOI: 10.1007/s00330-019-06510-3.
[13]
Pinker K, Moy L, Sutton EJ, et al. Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging[J]. Invest Radiol, 2018, 53(10): 587-595. DOI: 10.1097/RLI.0000000000000465.
[14]
Meng LS, Zhao X, Lu L, et al. A comparative assessment of MR BI-RADS 4 breast lesions with Kaiser score and apparent diffusion coefficient value[J]. Front Oncol, 2021, 11: 779642. DOI: 10.3389/fonc.2021.779642.
[15]
Li HY, Zhang YZ, Liu P, et al. Dynamic contrast-enhanced magnetic resonance imaging combined with multi-b value diffusion weighted imaging in the diagnosis of breast cancer[J]. Chin J Med Imaging, 2019, 27(12): 901-904. DOI: 10.3969/j.issn.1005-5185.2019.12.005.
[16]
Dietzel M, Baltzer PA, Vag T, et al. Application of breast MRI for prediction of lymph node metastases-systematic approach using 17 individual descriptors and a dedicated decision tree[J]. Acta Radiol, 2010, 51(8): 885-894. DOI: 10.3109/02841851.2010.504232.
[17]
Jajodia A, Sindhwani G, Pasricha S, et al. Application of the Kaiser score to increase diagnostic accuracy in equivocal lesions on diagnostic mammograms referred for MR mammography[J]. Eur J Radiol, 2021, 134: 109413. DOI: 10.1016/j.ejrad.2020.109413.
[18]
Lee SH, Shin HJ, Moon WK. Diffusion-weighted magnetic resonance imaging of the breast: standardization of image acquisition and interpretation[J]. Korean J Radiol, 2021, 22(1): 9-22. DOI: 10.3348/kjr.2020.0093.
[19]
Avendano D, Marino MA, Leithner D, et al. Limited role of DWI with apparent diffusion coefficient mapping in breast lesions presenting as non-mass enhancement on dynamic contrast-enhanced MRI[J]. Breast Cancer Res, 2019, 21(1): 136. DOI: 10.1186/s13058-019-1208-y.
[20]
Grimm LJ, Rahbar H, Abdelmalak M, et al. Ductal carcinoma in situ: state-of-the-art review[J]. Radiology, 2022, 302(2): 246-255. DOI: 10.1148/radiol.211839.
[21]
Yabuuchi H, Matsuo Y, Kamitani T, et al. Non-mass-like enhancement on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images[J]. Eur J Radiol, 2010, 75(1): e126-e132. DOI: 10.1016/j.ejrad.2009.09.013.
[22]
Lee SM, Nam KJ, Choo KS, et al. Patterns of malignant non-mass enhancement on 3-T breast MRI help predict invasiveness: using the BI-RADS lexicon fifth edition[J]. Acta Radiol Stock Swed, 2018, 59(11): 1292-1299. DOI: 10.1177/0284185118759139.
[23]
Lehotska V, Rauova K, Vanovcanova L. Multiparametric MRI analysis of morphologico-functional features of DCIS-correlation with grade of nuclear atypia[J]. Neoplasma, 2018, 65(3): 389-397. DOI: 10.4149/neo_2018_170509N333.

PREV Application of MRI ultrashort echo time and gradient echo sequence in the lungs of preterm infants
NEXT Application of magnetic resonance diffusion-weighted imaging in prognostic evaluation of microwave ablation of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn