Share:
Share this content in WeChat
X
Original Article
Study on time variability of brain activity in patients with irritable bowel syndrome with diarrhea based on dynamic amplitude of low-frequency fluctuation
WEN Xin  CHEN Jie  LIAO Chenxi  ZHENG Qianhua  LI Ying 

Cite this article as: Wen X, Chen J, Liao CX, et al. Study on time variability of brain activity in patients with irritable bowel syndrome with diarrhea based on dynamic amplitude of low-frequency fluctuation[J]. Chin J Magn Reson Imaging, 2022, 13(6): 61-65. DOI:10.12015/issn.1674-8034.2022.06.012.


[Abstract] Objective To investigate the changes in local brain function activity in the resting state of irritable bowel syndrome with diarrhea (IBS-D) patients.Materials and Methods Twenty-four patients with diarrhea-predominant IBS-D and 20 healthy controls underwent resting-state functional magnetic resonance imaging, the dynamic amplitude of low-frequency fluctuation (dALFF) value was calculated by using the amplitude of low-frequency fluctuation method combined with sliding window approach. Finally, the correlation analysis was performed to detect the relationship between the changes in dALFF value and some clinical data in IBS-D patients.Results The group comparison results in dALFF variability showed that patients with IBS-D exhibited increased dALFF variability in the left cerebellum(t=3.95) and right putamen (t=3.13, corrected by Alphasim, P<0.01 after correction). The abnormal dALFF variability of the putamen was positively correlated with the abdominal pain in patients with IBS-D (r=0.398,P=0.054).Conclusions The findings indicated that the patients with IBS-D exhibited abnormal temporal variability of spontaneous neural activity in the cerebellum and putamen. Moreover, the right putamen might be related to the occurrence and development of abdominal pain in IBS-D patients.
[Keywords] irritable bowel syndrome with diarrhea;resting-state functional magnetic resonance imaging;amplitude of low-frequency fluctuations;dynamic variability;putamen

WEN Xin1   CHEN Jie1   LIAO Chenxi1   ZHENG Qianhua1   LI Ying2*  

1 School of Acupuncture-Moxibustion & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China

2 Graduate School of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China

Li Y, E-mail: liying@cdutcm.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Key Research and Development Program of China (No. 2019YFC1712103); Youth Program of National Natural Science Foundation of China (No. 81804207).
Received  2022-02-22
Accepted  2022-05-20
DOI: 10.12015/issn.1674-8034.2022.06.012
Cite this article as: Wen X, Chen J, Liao CX, et al. Study on time variability of brain activity in patients with irritable bowel syndrome with diarrhea based on dynamic amplitude of low-frequency fluctuation[J]. Chin J Magn Reson Imaging, 2022, 13(6): 61-65. DOI:10.12015/issn.1674-8034.2022.06.012.

[1]
Canavan C, West J, Card T. The epidemiology of irritable bowel syndrome[J]. Clin Epidemiol, 2014, 6: 71-80. DOI: 10.2147/CLEP.S40245.
[2]
Ford AC, Lacy BE, Talley NJ. Irritable bowel syndrome[J]. N Engl J Med, 2017, 376(26): 2566-2578. DOI: 10.1056/nejmra1607547.
[3]
Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review[J]. JAMA, 2015, 313(9): 949-958. DOI: 10.1001/jama.2015.0954.
[4]
Chen XF, Guo Y, Lu XQ, et al. Aberrant intraregional brain activity and functional connectivity in patients with diarrhea-predominant irritable bowel syndrome[J]. Front Neurosci, 2021, 15: 721822. DOI: 10.3389/fnins.2021.721822.
[5]
Ao WQ, Cheng YG, Chen MX, et al. Intrinsic brain abnormalities of irritable bowel syndrome with diarrhea: a preliminary resting-state functional magnetic resonance imaging study[J]. BMC Med Imaging, 2021, 21(1): 4. DOI: 10.1186/s12880-020-00541-9.
[6]
Allen EA, Damaraju E, Plis SM, et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cereb Cortex, 2014, 24(3): 663-676. DOI: 10.1093/cercor/bhs352.
[7]
Zhao L, Wang DL, Xue SW, et al. Aberrant state-related dynamic amplitude of low-frequency fluctuations of the emotion network in major depressive disorder[J]. J Psychiatr Res, 2021, 133: 23-31. DOI: 10.1016/j.jpsychires.2020.12.003.
[8]
Cui Q, Sheng W, Chen YY, et al. Dynamic changes of amplitude of low-frequency fluctuations in patients with generalized anxiety disorder[J]. Hum Brain Mapp, 2020, 41(6): 1667-1676. DOI: 10.1002/hbm.24902.
[9]
Li J, Duan XJ, Cui Q, et al. More than just statics: temporal dynamics of intrinsic brain activity predicts the suicidal ideation in depressed patients[J]. Psychol Med, 2019, 49(5): 852-860. DOI: 10.1017/S0033291718001502.
[10]
Hawker GA, Mian S, Kendzerska T, et al. Measures of adult pain: visual analog scale for pain (VAS pain), numeric rating scale for pain (NRS pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short form-36 bodily pain scale (SF-36 BPS), and measure of intermittent and constant osteoarthritis pain (ICOAP)[J]. Arthritis Care Res (Hoboken), 2011, 63(Suppl 11): S240-S252. DOI: 10.1002/acr.20543.
[11]
Francis CY, Morris J, Whorwell PJ. The irritable bowel severity scoring system: a simple method of monitoring irritable bowel syndrome and its progress[J]. Aliment Pharmacol Ther, 1997, 11(2): 395-402. DOI: 10.1046/j.1365-2036.1997.142318000.x.
[12]
Patrick DL, Drossman DA, Frederick IO, et al. Quality of life in persons with irritable bowel syndrome: development and validation of a new measure[J]. Dig Dis Sci, 1998, 43(2): 400-411. DOI: 10.1023/a:1018831127942.
[13]
Liao W, Wu GR, Xu Q, et al. DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis[J]. Brain Connect, 2014, 4(10): 780-790. DOI: 10.1089/brain.2014.0253.
[14]
Li R, Liao W, Yu YY, et al. Differential patterns of dynamic functional connectivity variability of striato-cortical circuitry in children with benign epilepsy with centrotemporal spikes[J]. Hum Brain Mapp, 2018, 39(3): 1207-1217. DOI: 10.1002/hbm.23910.
[15]
Li Q, Cao XH, Liu S, et al. Dynamic alterations of amplitude of low-frequency fluctuations in patients with drug-naïve first-episode early onset schizophrenia[J]. Front Neurosci, 2020, 14: 901. DOI: 10.3389/fnins.2020.00901.
[16]
Xue T, Dong F, Huang RY, et al. Dynamic neuroimaging biomarkers of smoking in young smokers[J]. Front Psychiatry, 2020, 11: 663. DOI: 10.3389/fpsyt.2020.00663.
[17]
Hu XY, Zhang LQ, Bu X, et al. Localized connectivity in obsessive-compulsive disorder: an investigation combining univariate and multivariate pattern analyses[J]. Front Behav Neurosci, 2019, 13: 122. DOI: 10.3389/fnbeh.2019.00122.
[18]
Buckner RL, Krienen FM, Castellanos A, et al. The organization of the human cerebellum estimated by intrinsic functional connectivity[J]. J Neurophysiol, 2011, 106(5): 2322-2345. DOI: 10.1152/jn.00339.2011.
[19]
Naegel S, Holle D, Desmarattes N, et al. Cortical plasticity in episodic and chronic cluster headache[J]. Neuroimage Clin, 2014, 6: 415-423. DOI: 10.1016/j.nicl.2014.10.003.
[20]
Bocci T, de Carolis G, Ferrucci R, et al. Cerebellar transcranial direct current stimulation (ctDCS) ameliorates phantom limb pain and non-painful phantom limb sensations[J]. Cerebellum, 2019, 18(3): 527-535. DOI: 10.1007/s12311-019-01020-w.
[21]
Rosenberger C, Thürling M, Forsting M, et al. Contributions of the cerebellum to disturbed central processing of visceral stimuli in irritable bowel syndrome[J]. Cerebellum, 2013, 12(2): 194-198. DOI: 10.1007/s12311-012-0413-3.
[22]
Brooks JC, Zambreanu L, Godinez A, et al. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging[J]. Neuroimage, 2005, 27(1): 201-209. DOI: 10.1016/j.neuroimage.2005.03.041.
[23]
Kolomeets NS, Uranova NA. Numerical density of oligodendrocytes and oligodendrocyte clusters in the anterior putamen in major psychiatric disorders[J]. Eur Arch Psychiatry Clin Neurosci, 2020, 270(7): 841-850. DOI: 10.1007/s00406-020-01108-z.
[24]
Song GH, Venkatraman V, Ho KY, et al. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls[J]. Pain, 2006, 126(1/2/3): 79-90. DOI: 10.1016/j.pain.2006.06.017.
[25]
Bingel U, Quante M, Knab R, et al. Subcortical structures involved in pain processing: evidence from single-trial fMRI[J]. Pain, 2002, 99(1/2): 313-321. DOI: 10.1016/s0304-3959(02)00157-4.
[26]
Zheng RP, Chen Y, Jiang Y, et al. Dynamic altered amplitude of low-frequency fluctuations in patients with major depressive disorder[J]. Front Psychiatry, 2021, 12: 683610. DOI: 10.3389/fpsyt.2021.683610.
[27]
Erdeniz B, Serin E, İbadi Y, et al. Decreased functional connectivity in schizophrenia: the relationship between social functioning, social cognition and graph theoretical network measures[J]. Psychiatry Res Neuroimaging, 2017, 270: 22-31. DOI: 10.1016/j.pscychresns.2017.09.011.
[28]
Su C, Liu WL, Wang QQ, et al. Abnormal resting-state local spontaneous functional activity in irritable bowel syndrome patients: a meta-analysis[J]. J Affect Disord, 2022, 302: 177-184. DOI: 10.1016/j.jad.2022.01.075.
[29]
Labus JS, Dinov ID, Jiang ZG, et al. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks[J]. Pain, 2014, 155(1): 137-149. DOI: 10.1016/j.pain.2013.09.020.
[30]
Liu J, Bu X, Hu XY, et al. Temporal variability of regional intrinsic neural activity in drug-naïve patients with obsessive-compulsive disorder[J]. Hum Brain Mapp, 2021, 42(12): 3792-3803. DOI: 10.1002/hbm.25465.
[31]
Meng XY, Zheng JJ, Liu YP, et al. Increased dynamic amplitude of low frequency fluctuation in primary insomnia[J]. Front Neurol, 2020, 11: 609. DOI: 10.3389/fneur.2020.00609.

PREV Abnormal spontaneous brain activities in breast cancer patients after EC-T chemotherapy: A resting-state functional magnetic resonance imaging study
NEXT fMRI research on regional homogeneity and functional connectivity changes of brain regions in patients with end-stage renal disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn