Share:
Share this content in WeChat
X
Original Article
Structural damage of the corpus callosum connecting interhemispheric homologous areas correlated with motor dysfunction after subcortical stroke
GUO Miao  XU Guojun  YU Qiurong  WANG Hewei  YIN Dazhi  SUN Limin  NING Ruipeng  LIU Fan  FAN Mingxia 

Cite this article as: Guo M, Xu GJ, Yu QR, et al. Structural damage of the corpus callosum connecting interhemispheric homologous areas correlated with motor dysfunction after subcortical stroke[J]. Chin J Magn Reson Imaging, 2022, 13(6): 28-35. DOI:10.12015/issn.1674-8034.2022.06.006.


[Abstract] Objective To investigate the relationship between the transcallosal tracts abnormality of interhemispheric homotopic regions and motor impairment in unilateral subcortical stroke.Materials and Methods Diffusion tensor imaging data of 34 patients with unilateral subcortical stroke and 43 healthy subjects were collected. Using the high-resolution transcallosal tract template (TCATT), the fractional anisotropy (FA) of 32 transcallosal tracts connecting the interhemispheric homologous brain areas (including sensory motor area, prefrontal lobe, parietal lobe, temporal lobe and occipital lobe) in the stroke group and healthy control group were calculated and compared; furthermore, correlation analysis was conducted with the FA ratio (rFA) of corticospinal tract (CST) and the Fugl-Meyer assessment of upper extremity (FM-UE), respectively.Results Compared with the healthy controls, FA values of all the 32 transcallosal tracts in the midsagittal plane decreased in the stroke group, of which 29 showed significant differences (except three transcallosal tracts connecting homotopic regions of gyrus rectus, medial orbital and paracentral lobule). FA values of the 29 transcallosal tracts in the midsagittal plane were positively correlated with rFA (CST) and FM-UE in the stroke group. There was also a significant positive correlation between rFA (CST) and FM-UE (r=0.596, P=0.0004).Conclusions This study confirms that the damage of corpus callosum microstructure in subcortical stroke is closely related to the damage of ipsilesional CST. The secondary structural injury of the corpus callosum also have an important effect on the motor impairment following subcortical stroke.
[Keywords] stroke;diffusion tensor imaging;transcallosal tracts;interhemispheric homologous areas;corticospinal tract;motor dysfunction

GUO Miao1   XU Guojun1   YU Qiurong1   WANG Hewei2   YIN Dazhi3   SUN Limin2   NING Ruipeng1   LIU Fan1   FAN Mingxia1*  

1 Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, China

2 Huashan Hospital, Fudan University, Shanghai 200040, China

3 Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China

Fan MX, E-mail: mxfan@phy.ecnu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81974356); Young National Natural Science Foundation of China (No. 82102665); National Key R&D Program of China (No. 2020YFC2004200).
Received  2022-03-23
Accepted  2022-05-20
DOI: 10.12015/issn.1674-8034.2022.06.006
Cite this article as: Guo M, Xu GJ, Yu QR, et al. Structural damage of the corpus callosum connecting interhemispheric homologous areas correlated with motor dysfunction after subcortical stroke[J]. Chin J Magn Reson Imaging, 2022, 13(6): 28-35. DOI:10.12015/issn.1674-8034.2022.06.006.

[1]
Tater P, Pandey S. Post-stroke movement disorders: clinical spectrum, pathogenesis, and management[J]. Neurol India, 2021, 69(2): 272-283. DOI: 10.4103/0028-3886.314574.
[2]
Griffis JC, Metcalf NV, Corbetta M, et al. Structural disconnections explain brain network dysfunction after stroke[J]. Cell Rep, 2019, 28(10): 2527-2540.e9. DOI: 10.1016/j.celrep.2019.07.100.
[3]
Carter AR, Astafiev SV, Lang CE, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke[J]. Ann Neurol, 2010, 67(3): 365-375. DOI: 10.1002/ana.21905.
[4]
Salvador R, Martínez A, Pomarol-Clotet E, et al. A simple view of the brain through a frequency-specific functional connectivity measure[J]. Neuroimage, 2008, 39(1): 279-289. DOI: 10.1016/j.neuroimage.2007.08.018.
[5]
Stark DE, Margulies DS, Shehzad ZE, et al. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations[J]. J Neurosci, 2008, 28(51): 13754-13764. DOI: 10.1523/JNEUROSCI.4544-08.2008.
[6]
Tang CZ, Zhao ZY, Chen C, et al. Decreased functional connectivity of homotopic brain regions in chronic stroke patients: a resting state fMRI study[J]. PLoS One, 2016, 11(4): e0152875. DOI: 10.1371/journal.pone.0152875.
[7]
Urbin MA, Hong X, Lang CE, et al. Resting-state functional connectivity and its association with multiple domains of upper-extremity function in chronic stroke[J]. Neurorehabil Neural Repair, 2014, 28(8): 761-769. DOI: 10.1177/1545968314522349.
[8]
Chen JL, Schlaug G. Resting state interhemispheric motor connectivity and white matter integrity correlate with motor impairment in chronic stroke[J]. Front Neurol, 2013, 4: 178. DOI: 10.3389/fneur.2013.00178.
[9]
Li YX, Wang DF, Zhang HY, et al. Changes of brain connectivity in the primary motor cortex after subcortical stroke: a multimodal magnetic resonance imaging study[J]. Medicine (Baltimore), 2016, 95(6): e2579. DOI: 10.1097/MD.0000000000002579.
[10]
Peng YM, Liu JC, Hua MH, et al. Enhanced effective connectivity from ipsilesional to contralesional M1 in well-recovered subcortical stroke patients[J]. Front Neurol, 2019, 10: 909. DOI: 10.3389/fneur.2019.00909.
[11]
Lu QH, Huang GL, Chen L, et al. Structural and functional reorganization following unilateral internal capsule infarction contribute to neurological function recovery[J]. Neuroradiology, 2019, 61(10): 1181-1190. DOI: 10.1007/s00234-019-02278-x.
[12]
Thompson-Butel AG, Lin G, Shiner CT, et al. Comparison of three tools to measure improvements in upper-limb function with poststroke therapy[J]. Neurorehabil Neural Repair, 2015, 29(4): 341-348. DOI: 10.1177/1545968314547766.
[13]
Gao XJ, Tang ZZ, Xu GJ, et al. Assessment value of disrupted corticospinal tract secondary to stroke lesion for motor impairment: a diffu-Sion tensor tracking study[J]. Chin J Rehabilitation Theory Pract, 2018, 24(12): 1432-1437. DOI: 10.3969/j.issn.1006-9771.2018.12.015.
[14]
Archer DB, Coombes SA, McFarland NR, et al. Development of a transcallosal tractography template and its application to dementia[J]. Neuroimage, 2019, 200: 302-312. DOI: 10.1016/j.neuroimage.2019.06.065.
[15]
Moura LM, Luccas R, de Paiva JPQ, et al. Diffusion tensor imaging biomarkers to predict motor outcomes in stroke: a narrative review[J]. Front Neurol, 2019, 10: 445. DOI: 10.3389/fneur.2019.00445.
[16]
Stewart JC, Dewanjee P, Tran G, et al. Role of corpus callosum integrity in arm function differs based on motor severity after stroke[J]. Neuroimage Clin, 2017, 14: 641-647. DOI: 10.1016/j.nicl.2017.02.023.
[17]
Liu IC, Chiu CH, Chen CJ, et al. The microstructural integrity of the corpus callosum and associated impulsivity in alcohol dependence: a tractography-based segmentation study using diffusion spectrum imaging[J]. Psychiatry Res, 2010, 184(2): 128-134. DOI: 10.1016/j.pscychresns.2010.07.002.
[18]
D'Imperio D, Romeo Z, Maistrello L, et al. Sensorimotor, attentional, and neuroanatomical predictors of upper limb motor deficits and rehabilitation outcome after stroke[J]. Neural Plast, 2021, 2021: 8845685. DOI: 10.1155/2021/8845685.
[19]
Liu JC, Wang CH, Qin W, et al. Corticospinal fibers with different origins impact motor outcome and brain after subcortical stroke[J]. Stroke, 2020, 51(7): 2170-2178. DOI: 10.1161/STROKEAHA.120.029508.
[20]
Fling BW, Benson BL, Seidler RD. Transcallosal sensorimotor fiber tract structure-function relationships[J]. Hum Brain Mapp, 2013, 34(2): 384-395. DOI: 10.1002/hbm.21437.
[21]
Archer DB, Vaillancourt DE, Coombes SA. A template and probabilistic atlas of the human sensorimotor tracts using diffusion MRI[J]. Cereb Cortex, 2018, 28(5): 1685-1699. DOI: 10.1093/cercor/bhx066.
[22]
Liu JC, Qin W, Zhang J, et al. Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke[J]. Stroke, 2015, 46(4): 1045-1051. DOI: 10.1161/STROKEAHA.114.007044.
[23]
Wei Y. Characterization of corticospinal tract injury along fibers by automated fiber quantification in stroke[D]. Shanghai: East China Normal University, 2020.
[24]
Yin D, Yan X, Fan M, et al. Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function[J]. AJNR Am J Neuroradiol, 2013, 34(7): 1341-1347. DOI: 10.3174/ajnr.A3410.
[25]
Liang ZJ, Zeng JS, Liu SR, et al. A prospective study of secondary degeneration following subcortical infarction using diffusion tensor imaging[J]. J Neurol Neurosurg Psychiatry, 2007, 78(6): 581-586. DOI: 10.1136/jnnp.2006.099077.
[26]
Wei XE, Shang K, Zhou J, et al. Acute subcortical infarcts cause secondary degeneration in the remote non-involved cortex and connecting fiber tracts[J]. Front Neurol, 2019, 10: 860. DOI: 10.3389/fneur.2019.00860.
[27]
Alstott J, Breakspear M, Hagmann P, et al. Modeling the impact of lesions in the human brain[J]. PLoS Comput Biol, 2009, 5(6): e1000408. DOI: 10.1371/journal.pcbi.1000408.
[28]
Li YX, Wu P, Liang FR, et al. The microstructural status of the corpus callosum is associated with the degree of motor function and neurological deficit in stroke patients[J]. PLoS One, 2015, 10(4): e0122615. DOI: 10.1371/journal.pone.0122615.
[29]
Guggisberg AG, Koch PJ, Hummel FC, et al. Brain networks and their relevance for stroke rehabilitation[J]. Clin Neurophysiol, 2019, 130(7): 1098-1124. DOI: 10.1016/j.clinph.2019.04.004.
[30]
van Meer MP, van der Marel K, Otte WM, et al. Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: a combined resting-state functional MRI and manganese-enhanced MRI study[J]. J Cereb Blood Flow Metab, 2010, 30(10): 1707-1711. DOI: 10.1038/jcbfm.2010.124.
[31]
Wu Y. Clinical application of transcranial magnetic stimulation for stroke rehabilitation[J]. Rehabilitation Med, 2020, 30(6): 414-420. DOI: 10.3724/SP.J.1329.2020.06002.
[32]
di Pino G, Pellegrino G, Assenza G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation[J]. Nat Rev Neurol, 2014, 10(10): 597-608. DOI: 10.1038/nrneurol.2014.162.
[33]
Hartwigsen G, Volz LJ. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging[J]. NeuroImage, 2021, 224: 117449. DOI: 10.1016/j.neuroimage.2020.117449.
[34]
Gong ZG, Zhang RJ, Jiang WB, et al. Integrity of the hand fibers of the corticospinal tract shown by diffusion tensor imaging predicts hand function recovery after hemorrhagic stroke[J]. J Stroke Cerebrovasc Dis, 2021, 30(1): 105447. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105447.
[35]
Lee J, Lee A, Kim H, et al. Different brain connectivity between responders and nonresponders to dual-mode noninvasive brain stimulation over bilateral primary motor cortices in stroke patients[J]. Neural Plast, 2019, 2019: 3826495. DOI: 10.1155/2019/3826495.

PREV Preliminary study on the value of T2 mapping in predicting lymphovascular invasion of rectal cancer
NEXT A clinical study of amygdala volume changes in medial temporal lobe epilepsy patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn