Share:
Share this content in WeChat
X
Clinical Article
Distribution characteristics and clinical value of U-fiber involvements in multiple sclerosis
LUO Dan  CHEN Xiaoya  ZHU Qiyuan  ZHANG Zhiwei  YU Bin  ZHENG Qiao  FENG Jinzhou  LI Yongmei 

Cite this article as: Luo D, Chen XY, Zhu QY, et al. Distribution characteristics and clinical value of U-fiber involvements in multiple sclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(6): 1-4, 16. DOI:10.12015/issn.1674-8034.2022.06.001.


[Abstract] Objective To study the frequency and distribution characteristics of U-fiber involvements in relapsing-remitting multiple sclerosis (RRMS), and to investigate whether these findings are correlated with physical disability and neuropsychological impairments.Materials and Methods This retrospective study included 49 cases of clinically diagnosed RRMS patients. Three-dimensional T2 fluid attenuation inversion recovery (3D T2-FLAIR) and T1-weighted magnetization-prepared rapid acquisition of gradient echo (T1 MPRAGE) sequences were obtained, as well as the clinical Extended Disability Status Scale (EDSS) and neuropsychological tests. Based on the ITK-SNAP software, the U-fiber lesions were manually delineated on the 3D T2-FLAIR image, and the prevalence of lesions was calculated in addition to the spatial distribution so as to make the U-fiber lesion probability map. The SPSS 26.0 software was used to evaluate the correlation between the number or volume of U-fiber lesions and clinical data, including EDSS and neuropsychological tests scores.Results A total of 434 hyperintensities along the U-fiber were detected in 47 (95.9%) RRMS patients on 3D T2-FLAIR image. Two-hundred and nine lesions (48.2%) were seen in the frontal lobe, 85 (19.6%) in the parietal lobe, 55 (12.7%) in the temporal lobe, 61 (14.1%) in the occipital lobe, and 24 (5.5%) in the insula lobe. The number and volume of U- fiber lesions were positively correlated with the Hamilton Depression-17 (HAMD-17) Scale and Fatigue Severity Scale (FSS) scores , and negatively correlated with the Symbolic Digital Modal Test (SDMT) scores (all P<0.05), and demonstrated no significant correlation with EDSS scores (P>0.05).Conclusions U-fiber involvement is common in RRMS patients and occurs frequently in the frontal lobe. U-fiber lesions are related to depression, fatigue and cognitive impairment in RRMS.
[Keywords] multiple sclerosis;U-fiber lesions;cognitive impairment;lesion probability map;three-dimensional fluid attenuation inversion recovery;magnetic resonance imaging

LUO Dan   CHEN Xiaoya   ZHU Qiyuan   ZHANG Zhiwei   YU Bin   ZHENG Qiao   FENG Jinzhou   LI Yongmei*  

Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Li YM, E-mail: lymzhang70@aliyun.com

Conflicts of interest   None.

Received  2021-11-19
Accepted  2022-05-23
DOI: 10.12015/issn.1674-8034.2022.06.001
Cite this article as: Luo D, Chen XY, Zhu QY, et al. Distribution characteristics and clinical value of U-fiber involvements in multiple sclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(6): 1-4, 16.DOI:10.12015/issn.1674-8034.2022.06.001

[1]
Cordani C, Meani A, Esposito F, et al. Imaging correlates of hand motor performance in multiple sclerosis: a multiparametric structural and functional MRI study[J]. Mult Scler, 2020, 26(2): 233-244. DOI: 10.1177/1352458518822145.
[2]
Conti L, Preziosa P, Meani A, et al. Unraveling the substrates of cognitive impairment in multiple sclerosis: a multiparametric structural and functional magnetic resonance imaging study[J]. Eur J Neurol, 2021, 28(11): 3749-3759. DOI: 10.1111/ene.15023.
[3]
Movahedian Attar F, Kirilina E, Haenelt D, et al. Mapping short association fibers in the early cortical visual processing stream using in vivo diffusion tractography[J]. Cereb Cortex, 2020, 30(8): 4496-4514. DOI: 10.1093/cercor/bhaa049.
[4]
Lazeron RH, Langdon DW, Filippi M, et al. Neuropsychological impairment in multiple sclerosis patients: the role of (juxta) cortical lesion on FLAIR[J]. Mult Scler, 2000, 6(4): 280-285. DOI: 10.1177/135245850000600410.
[5]
Bigham B, Zamanpour SA, Zemorshidi F, et al. Identification of superficial white matter abnormalities in Alzheimer's disease and mild cognitive impairment using diffusion tensor imaging[J]. J Alzheimers Dis Rep, 2020, 4(1): 49-59. DOI: 10.3233/ADR-190149.
[6]
Haider L, Prados F, Chung K, et al. Cortical involvement determines impairment 30 years after a clinically isolated syndrome[J]. Brain, 2021, 144(5): 1384-1395. DOI: 10.1093/brain/awab033.
[7]
Solomon AJ, Pettigrew R, Naismith RT, et al. Challenges in multiple sclerosis diagnosis: misunderstanding and misapplication of the McDonald criteria[J]. Mult Scler, 2021, 27(2): 250-258. DOI: 10.1177/1352458520910496.
[8]
Wattjes MP, Ciccarelli O, Reich DS, et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis[J]. Lancet Neurol, 2021, 20(8): 653-670. DOI: 10.1016/S1474-4422(21)00095-8.
[9]
Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria[J]. Lancet Neurol, 2018, 17(2): 162-173. DOI: 10.1016/S1474-4422(17)30470-2.
[10]
Medrano Martorell S, Cuadrado Blázquez M, García Figueredo D, et al. Hyperintense punctiform images in the white matter: a diagnostic approach[J]. Radiologia, 2012, 54(4): 321-335. DOI: 10.1016/j.rx.2011.09.015.
[11]
Sarbu N, Shih RY, Oleaga L, et al. RadioGraphics update: white matter diseases with radiologic-pathologic correlation[J]. RadioGraphics, 2020, 40(3): E4-E7. DOI: 10.1148/rg.2020190204.
[12]
Buyukturkoglu K, Vergara C, Fuentealba V, et al. Machine learning to investigate superficial white matter integrity in early multiple sclerosis[J]. J Neuroimaging, 2022, 32(1): 36-47. DOI: 10.1111/jon.12934.
[13]
Huh SY, Min JH, Kim W, et al. The usefulness of brain MRI at onset in the differentiation of multiple sclerosis and seropositive neuromyelitis optica spectrum disorders[J]. Mult Scler, 2014, 20(6): 695-704. DOI: 10.1177/1352458513506953.
[14]
Yoshino M, Saito K, Kawasaki K, et al. The origin and development of subcortical U-fibers in gyrencephalic ferrets[J]. Mol Brain, 2020, 13(1): 37. DOI: 10.1186/s13041-020-00575-8.
[15]
Xiong H, Tang ZY, Li XJ, et al. Correlation between cortical and white matter in patients with multiple sclerosis[J]. Chin J Med Imaging, 2020, 28(7): 499-503. DOI: 10.3969/j.issn.1005-5185.2020.07.004.
[16]
Calabrese M, Battaglini M, Giorgio A, et al. Imaging distribution and frequency of cortical lesions in patients with multiple sclerosis[J]. Neurology, 2010, 75(14): 1234-1240. DOI: 10.1212/WNL.0b013e3181f5d4da.
[17]
Kamson DO, Illés Z, Aradi M, et al. Volumetric comparisons of supratentorial white matter hyperintensities on FLAIR MRI in patients with migraine and multiple sclerosis[J]. J Clin Neurosci, 2012, 19(5): 696-701. DOI: 10.1016/j.jocn.2011.07.044.
[18]
Sousa C, Rigueiro-Neves M, Passos AM, et al. Assessment of cognitive functions in patients with multiple sclerosis applying the normative values of the Rao's brief repeatable battery in the Portuguese population[J]. BMC Neurol, 2021, 21(1): 170. DOI: 10.1186/s12883-021-02193-w.
[19]
Cortese R, Carotenuto A, di Filippo M, et al. Editorial: cognition in multiple sclerosis[J]. Front Neurol, 2021, 12: 751687. DOI: 10.3389/fneur.2021.751687.
[20]
Fujimori J, Fujihara K, Wattjes M, et al. Patterns of cortical grey matter thickness reduction in multiple sclerosis[J]. Brain Behav, 2021, 11(4): e02050. DOI: 10.1002/brb3.2050.
[21]
Cruz-Gomez ÁJ, Forero L, Lozano-Soto E, et al. Cortical thickness and serum NfL explain cognitive dysfunction in newly diagnosed patients with multiple sclerosis[J]. Neurol Neuroimmunol Neuroinflamm, 2021, 8(6): e1074. DOI: 10.1212/NXI.0000000000001074.
[22]
Moriarty DM, Blackshaw AJ, Talbot PR, et al. Memory dysfunction in multiple sclerosis corresponds to juxtacortical lesion load on fast fluid-attenuated inversion-recovery MR images[J]. AJNR Am J Neuroradiol, 1999, 20(10): 1956-1962.
[23]
Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity[J]. J Neurophysiol, 2011, 106(3): 1125-1165. DOI: 10.1152/jn.00338.2011.
[24]
Papadaki EZ, Simos PG, Mastorodemos VC, et al. Regional MRI perfusion measures predict motor/executive function in patients with clinically isolated syndrome[J]. Behav Neurol, 2014, 2014: 252419. DOI: 10.1155/2014/252419.
[25]
Miki Y, Grossman RI, Udupa JK, et al. Isolated U-fiber involvement in MS: preliminary observations[J]. Neurology, 1998, 50(5): 1301-1306. DOI: 10.1212/wnl.50.5.1301.
[26]
Huang MH, Zhou FQ. Research progress in the fMRI of cognitive impairment and plasticity of multiple sclerosis[J]. J Pract Radiol, 2018, 34(8): 1286-1288, 1303. DOI: 10.3969/j.issn.1002-1671.2018.08.037.
[27]
Zipoli V, Goretti B, Hakiki B, et al. Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes[J]. Mult Scler, 2010, 16(1): 62-67. DOI: 10.1177/1352458509350311.
[28]
Mustač F, Pašić H, Medić F, et al. Anxiety and depression as comorbidities of multiple sclerosis[J]. Psychiatr Danub, 2021, 33(Suppl 4): 480-485.
[29]
Castellaro M, Magliozzi R, Palombit A, et al. Heterogeneity of cortical lesion susceptibility mapping in multiple sclerosis[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1087-1095. DOI: 10.3174/ajnr.A5150.
[30]
Klistorner S, Barnett MH, Graham SL, et al. The expansion and severity of chronic MS lesions follows a periventricular gradient[J]. Mult Scler, 2022. DOI: 10.1177/13524585221080667.
[31]
Singhal T, Cicero S, Pan H, et al. Regional microglial activation in the substantia nigra is linked with fatigue in MS[J]. Neurol Neuroimmunol Neuroinflamm, 2020, 7(5): e854. DOI: 10.1212/NXI.0000000000000854.
[32]
Marrie RA, Patel R, Bernstein CN, et al. Anxiety and depression affect performance on the symbol digit modalities test over time in MS and other immune disorders[J]. Mult Scler, 2021, 27(8): 1284-1292. DOI: 10.1177/1352458520961534.
[33]
Newland P, Basan Y, Chen L, et al. Depression and inflammatory markers in veterans with multiple sclerosis[J]. Biol Res Nurs, 2022, 24(1): 123-127. DOI: 10.1177/10998004211050082.
[34]
Hametner S, dal Bianco A, Trattnig S, et al. Iron related changes in MS lesions and their validity to characterize MS lesion types and dynamics with Ultra-high field magnetic resonance imaging[J]. Brain Pathol, 2018, 28(5): 743-749. DOI: 10.1111/bpa.12643.
[35]
Hidalgo de la Cruz M, Valsasina P, Meani A, et al. Differential association of cortical, subcortical and spinal cord damage with multiple sclerosis disability milestones: a multiparametric MRI study[J]. Mult Scler, 2022, 28(3): 406-417. DOI: 10.1177/13524585211020296.
[36]
Kerbrat A, Gros C, Badji A, et al. Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability[J]. Brain, 2020, 143(7): 2089-2105. DOI: 10.1093/brain/awaa162.

PREV The research progress of diagnosing meniscus injury in MRI based on deep learning
NEXT Comparison of echo-planar and turbo spin-echo diffusion-weighted imaging sequence in the diagnosis of middle ear cholesteatoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn