Share:
Share this content in WeChat
X
Review
Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy
HU Rui  LI Rui  YANG Pengcheng  CHEN Zixian  GUO Shunlin 

Cite this article as: Hu R, Li R, Yang PC, et al. Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy[J]. Chin J Magn Reson Imaging, 2022, 13(5): 151-153, 170. DOI:10.12015/issn.1674-8034.2022.05.032.


[Abstract] At present, the non-invasive and accurate diagnosis of left ventricular hypertrophy disease still faces many challenges, which is of great significance for guiding clinical treatment and evaluating prognosis. Cardiac magnetic resonance is a powerful tool to evaluate and diagnose the etiology of left ventricular hypertrophy. It can not only dynamically observe the anatomical structure of the heart, but also accurately evaluate cardiac function and myocardial conditions by using late gadolinium enhancement, parameter quantification, feature tracking and diffusion tensor imaging, and T1 mapping, extracellular volume integral number and strain can be obtained through a series of post-processing to quantify myocardial injury and function. These techniques have great potential to identify the etiology of left ventricular hypertrophy and provide valuable prognostic information. This article reviews the typical cardiac magnetic resonance findings and their differentiation in various diseases of left ventricular hypertrophy.
[Keywords] left ventricular hypertrophy;cardiac magnetic resonance;delayed enhancement technique;T1 mapping;extracellular volume;hypertrophic cardiomyopathy;cardiac amyloidosis;hypertensive heart diseas;aortic stenosis;Anderson-Fabry disease

HU Rui1   LI Rui1   YANG Pengcheng1   CHEN Zixian2   GUO Shunlin2*  

1 The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China

2 Department of Radiology, the First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou 730000, China

Guo SL, E-mail: guoshunlin@msn.com

Conflicts of interest   None.

Received  2022-01-08
Accepted  2022-04-24
DOI: 10.12015/issn.1674-8034.2022.05.032
Cite this article as: Hu R, Li R, Yang PC, et al. Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy[J]. Chin J Magn Reson Imaging, 2022, 13(5): 151-153, 170.DOI:10.12015/issn.1674-8034.2022.05.032

[1]
Bacharova L, Estes EH. Left Ventricular Hypertrophy by the Surface ECG[J]. J Electrocardiol, 2017, 50(6): 906-908. DOI: 10.1016/j.jelectrocard.2017.06.006.
[2]
Mahrholdt H, Wagner A, Judd RM, et al. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies[J]. Eur Heart J, 2005, 26(15): 1461-1474. DOI: 10.1093/eurheartj/ehi258.
[3]
Zhao SH. To meet the challenge of new cardiac magnetic resonance imaging technology[J]. Chin J Med imaging Technol, 2017, 33(8): 1125-1128. DOI: 10.13929/j.1003-3289.201707120.
[4]
Zhou D, Zhao SH, Lu MJ. Myocardial T1 mapping progress: imaging technology and clinical application[J]. Radiologic Pract, 2020, 35(7): 933-938. DOI: 10.13609/j.cnki.1000-0313.2020.07.020.
[5]
Tahir E, Sinn M, Bohnen S, et al. Acute versus Chronic Myocardial Infarction: Diagnostic Accuracy of Quantitative Native T1 and T2 Mapping versus Assessment of Edema on Standard T2-weighted Cardiovascular MR Images for Differentiation[J]. Radiology, 2017, 285(1): 83-91. DOI: 10.1148/radiol.2017162338.
[6]
Krittayaphong R, Zhang S, Saiviroonporn P, et al. Detection of cardiac iron overload with native magnetic resonance T1 and T2 mapping in patients with thalassemia[J]. Int J Cardiol, 2017, 248: 421-426. DOI: 10.1016/j.ijcard.2017.06.100.
[7]
Burrage MK, Ferreira VM. Cardiovascular Magnetic Resonance for the Differentiation of Left Ventricular Hypertrophy[J]. Curr Heart Fail Rep, 2020, 17(5): 192-204. DOI: 10.1007/s11897-020-00481-z.
[8]
Xia H, Yeung DF, Di Stefano C, et al. Ventricular strain analysis in patients with no structural heart disease using a vendor-independent speckle-tracking software[J]. BMC Cardiovasc Disord, 2020, 20(1): 274. DOI: 10.1186/s12872-020-01559-1.
[9]
Khalique Z, Ferreira PF, Scott AD, et al. Diffusion Tensor Cardiovascular Magnetic Resonance Imaging: A Clinical Perspective[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1235-1255. DOI: 10.1016/j.jcmg.2019.07.016.
[10]
Elliott PM, Anastasakis A, Borger MA, et al. 2014 esc guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the european society of cardiology (esc)[J]. Eur heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
[11]
Dohy Z, Szabo L, Toth A, et al. Prognostic significance of cardiac magnetic resonance-based markers in patients with hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2021, 37(6): 2027-2036. DOI: 10.1007/s10554-021-02165-8.
[12]
Guglielmo M, Pontone G. Risk stratification in cardiomyopathies (dilated, hypertrophic, and arrhythmogenic cardiomyopathy) by cardiac magnetic resonance imaging[J]. Eur Heart JSuppl, 2021, 23(Suppl E): E118-E122. DOI: 10.1093/eurheartj/suab105.
[13]
Neubauer S, Kolm P, Ho CY, et al. Distinct Subgroups in Hypertrophic Cardiomyopathy in the NHLBI HCM Registry[J]. J Am Coll Cardiol, 2019, 74(19): 2333-2345. DOI: 10.1016/j.jacc.2019.08.1057.
[14]
Liu J, Zhao S, Yu S, et al. Patterns of Replacement Fibrosis in Hypertrophic Cardiomyopathy[J]. Radiology, 2021, 302(2): 298-306. DOI: 10.1148/radiol.2021210914.
[15]
Vigneault DM, Yang E, Jensen PJ, et al. Left Ventricular Strain Is Abnormal in Preclinical and Overt Hypertrophic Cardiomyopathy: Cardiac MR Feature Tracking[J]. Radiology, 2019, 290(3): 640-648. DOI: 10.1148/radiol.2018180339.
[16]
Ho CY, Abbasi SA, Neilan TG, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy[J]. Circ Cardiovasc Imaging, 2013, 6(3): 415-422. DOI: 10.1161/CIRCIMAGING.112.000333.
[17]
Neisius U, El-Rewaidy H, Nakamori S, et al. Radiomic Analysis of Myocardial Native T1 Imaging Discriminates Between Hypertensive Heart Disease and Hypertrophic Cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(10): 1946-1954. DOI: 10.1016/j.jcmg.2018.11.024.
[18]
Li Y, Liu X, Yang F, et al. Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy[J]. Eur Radiol, 2021, 31(7): 4557-4567. DOI: 10.1007/s00330-020-07650-7.
[19]
Neisius U, Myerson L, Fahmy AS, et al. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy[J]. PLoS One, 2019, 14(8): e0221061. DOI: 10.1371/journal.pone.0221061.
[20]
Ariga R, Tunnicliffe EM, Manohar SG, et al. Identification of Myocardial Disarray in Patients With Hypertrophic Cardiomyopathy and Ventricular Arrhythmias[J]. J Am Coll Cardiol, 2019, 73(20): 2493-2502. DOI: 10.1016/j.jacc.2019.02.065.
[21]
Guo YY, Tan LH, Zeng M, et al. Quantitative assessment of left ventricular strain in amyloidosis by magnetic resonance tissue tracing[J]. J Clin Radiol, 2020, 39(5): 908-912. DOI: 10.13437/j.cnki.jcr.2020.05.014.
[22]
Giusca S, Steen H, Montenbruck M, et al. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2021, 23(1): 92. DOI: 10.1186/s12968-021-00775-8.
[23]
Mavrogeni SI, Vartela V, Ntalianis A, et al. Cardiac amyloidosis: in search of the ideal diagnostic tool[J]. Herz, 2021, 46(Suppl 1): 9-14. DOI: 10.1007/s00059-019-04871-5.
[24]
Raina S, Lensing SY, Nairooz RS, et al. Prognostic Value of Late Gadolinium Enhancement CMR in Systemic Amyloidosis[J]. JACC Cardiovasc Imaging, 2016, 9(11): 1267-1277. DOI: 10.1016/j.jcmg.2016.01.036.
[25]
Liu JM, Liu A, Leal J, et al. Measurement of myocardial native T1 in cardiovascular diseases and norm in 1291 subjects[J]. J Cardiovasc Magn Reson, 2017, 19(1): 74. DOI: 10.1186/s12968-017-0386-y.
[26]
Cuddy SAM, Bravo PE, Falk RH, et al. Improved Quantification of Cardiac Amyloid Burden in Systemic Light Chain Amyloidosis: Redefining Early Disease?[J]. JACC Cardiovasc Imaging, 2020, 13(6): 1325-1336. DOI: 10.1016/j.jcmg.2020.02.025.
[27]
Williams LK, Forero JF, Popovic ZB, et al. Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics[J]. J Cardiovasc Magn Reson, 2017, 19(1): 61. DOI: 10.1186/s12968-017-0376-0.
[28]
Liao X, Zeng M, Zhang JM, et al. Identification of two common types of myocardial amyloidosis by cardiac magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2021, 12(9): 30-35. DOI: 10.12015/issn.1674-8034.2021.09.007.
[29]
Gotschy A, von Deuster C, van Gorkum RJH, et al. Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging[J]. J Cardiovasc Magn Reson, 2019, 21(1): 56. DOI: 10.1186/s12968-019-0563-2.
[30]
Pan JA, Michaëlsson E, Shaw PW, et al. Extracellular volume by cardiac magnetic resonance is associated with biomarkers of inflammation in hypertensive heart disease[J]. J Hypertens, 2019, 37(1): 65-72. DOI: 10.1097/HJH.0000000000001875.
[31]
Schumann CL, Jaeger NR, Kramer CM. Recent Advances in Imaging of Hypertensive Heart Disease[J]. Curr Hypertens Rep, 2019, 21(1): 3. DOI: 10.1007/s11906-019-0910-6.
[32]
Shi RY, Wu R, An DL, et al. Texture analysis applied in T1 maps and extracellular volume obtained using cardiac MRI in the diagnosis of hypertrophic cardiomyopathy and hypertensive heart disease compared with normal controls[J]. Clin Radiol, 2021, 76(3): 236.e9-e19. DOI: 10.1016/j.crad.2020.11.001.
[33]
Balciunaite G, Skorniakov V, Rimkus A, et al. Prevalence and prognostic value of late gadolinium enhancement on CMR in aortic stenosis: meta-analysis[J]. Eur Radiol, 2020, 30(1): 640-651. DOI: 10.1007/s00330-019-06386-3.
[34]
Everett RJ, Treibel TA, Fukui M, et al. Extracellular Myocardial Volume in Patients With Aortic Stenosis[J]. J Am Coll Cardiol, 2020, 75(3): 304-316. DOI: 10.1016/j.jacc.2019.11.032.
[35]
Perry R, Shah R, Saiedi M, et al. The Role of Cardiac Imaging in the Diagnosis and Management of Anderson-Fabry Disease[J]. JACC Cardiovasc Imaging, 2019, 12(7): 1230-1242. DOI: 10.1016/j.jcmg.2018.11.039.
[36]
Cavalcante JL, Rijal S, Abdelkarim I, et al. Cardiac amyloidosis is prevalent in older patients with aortic stenosis and carries worse prognosis[J]. J Cardiovasc Magn Reson, 2017, 19(1): 98. DOI: 10.1186/s12968-017-0415-x.
[37]
Caredda G, Bassareo PP, Cherchi MV, et al. Anderson-fabry disease: role of traditional and new cardiac MRI techniques[J]. Br J Radiol, 2021, 94(1124): 20210020. DOI: 10.1259/bjr.20210020.
[38]
Camporeale A, Pieroni M, Pieruzzi F, et al. Predictors of clinical evolution in prehypertrophic Fabry disease[J]. Circ Cardiovasc Imaging, 2019, 12(4): e008424. DOI: 10.1161/CIRCIMAGING.118.008424.
[39]
Deborde E, Dubourg B, Bejar S, et al. Differentiation between Fabry disease and hypertrophic cardiomyopathy with cardiac T1 mapping[J]. Diagn Interv Imaging, 2020, 101(2): 59-67. DOI: 10.1016/j.diii.2019.08.006.
[40]
Vijapurapu R, Nordin S, Baig S, et al. Global longitudinal strain, myocardial storage and hypertrophy in Fabry disease[J]. Heart, 2019, 105(6): 470-476. DOI: 10.1136/heartjnl-2018-313699.
[41]
Mathur S, Dreisbach JG, Karur GR, et al. Loss of base-to-apex circumferential strain gradient assessed by cardiovascular magnetic resonance in Fabry disease: relationship to T1 mapping, late gadolinium enhancement and hypertrophy[J]. J Cardiovasc Magn Reson, 2019, 21(1): 45. DOI: 10.1186/s12968-019-0557-0.
[42]
Aquaro GD, Corsi E, Todiere G, et al. Magnetic Resonance for Differential Diagnosis of Left Ventricular Hypertrophy: Diagnostic and Prognostic Implications[J]. J Clin Med, 2022, 11(3): 651. DOI: 10.3390/jcm11030651.

PREV MRI research progress of temporomandibular joint disorder
NEXT Research progress on magnetic resonance imaging biomarkers in predicting the risk of postoperative recurrence with hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn