Share:
Share this content in WeChat
X
Review
MRI research progress of temporomandibular joint disorder
WANG Wenhui  ZHEN Junping 

Cite this article as: Wang WH, Zhen JP. MRI research progress of temporomandibular joint disorder[J]. Chin J Magn Reson Imaging, 2022, 13(5): 148-150, 166. DOI:10.12015/issn.1674-8034.2022.05.031.


[Abstract] Temporomandibular disorder (TMD) is a common disorder of temporomandibular joint (TMJ) and masticatory muscle pain and dysfunction. Magnetic resonance imaging, as the preferred non-invasive imaging method, provides visualization of the soft and hard tissues of TMJ and masticatory muscles, which plays an important role in the diagnosis and treatment of TMJ patients. Diffusion imaging, T2 mapping, ultrashort echo time (UTE) and zero echo time (ZTE) further promote quantitative analysis and functional imaging of TMD and associated muscle ultrastructural changes. These technologies go beyond current anatomical imaging capabilities and provide a better understanding of the physiological and pathological states of the articular disc, posterior disc tissue, condyles, fossa, and surrounding masticatory muscle groups, and ultimately contribute to early diagnosis, treatment planning, evaluation of treatment outcomes, and even image-guided interventions. This article reviews the recent progress and diagnostic value of MRI in TMD.
[Keywords] temporomandibular disorder;temporomandibular joint disorder;magnetic resonance imaging;functional imaging;diffusion-weighted imaging;quantitative diagnosis;review

WANG Wenhui1   ZHEN Junping2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Imaging, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China

Zhen JP, E-mail: doctorzjp@sxmu.edu.cn

Conflicts of interest   None.

Received  2021-12-14
Accepted  2022-04-11
DOI: 10.12015/issn.1674-8034.2022.05.031
Cite this article as: Wang WH, Zhen JP. MRI research progress of temporomandibular joint disorder[J]. Chin J Magn Reson Imaging, 2022, 13(5): 148-150, 166.DOI:10.12015/issn.1674-8034.2022.05.031

[1]
Larheim TA, Hol C, Ottersen MK, et al. The role of imaging in the diagnosis of temporomandibular joint pathology[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(3): 239-249. DOI: 10.1016/j.coms.2018.04.001.
[2]
Valesan LF, Da-Cas CD, Réus JC, et al. Prevalence of temporomandibular joint disorders: a systematic review and meta-analysis[J]. Clin Oral Investig, 2021, 25(2): 441-453. DOI: 10.1007/s00784-020-03710-w.
[3]
Yılmaz D, Kamburoğlu K. Comparison of the effectiveness of high resolution ultrasound with MRI in patients with temporomandibular joint dısorders[J]. Dentomaxillofac Radiol, 2019, 48(5): 20180349. DOI: 10.1259/dmfr.20180349.
[4]
Le BD. What can we see with IVIM MRI?[J]. NeuroImage, 2019, 187: 56-67. DOI: 10.1016/j.neuroimage.2017.12.062.
[5]
Oudeman J, Nederveen AJ, Strijkers GJ, et al. Techniques and applications of skeletal muscle diffusion tensor imaging: a review[J]. J Magn Reson Imaging, 2016, 43(4): 773-788. DOI: 10.1002/jmri.25016.
[6]
Chikui T, Shiraishi T, Ichihara T, et al. Effect of clenching on T2 and diffusion parameters of the masseter muscle[J]. Acta Radiol, 2010, 51(1): 58-63. DOI: 10.3109/02841850903280508.
[7]
Sawada E, Kaneda T, Sakai O, et al. Increased apparent diffusion coefficient values of masticatory muscles on diffusion-weighted magnetic resonance imaging in patients with temporomandibular joint disorder and unilateral pain[J]. J Oral Maxillofac Surg, 2019, 77(11): 2223-2229. DOI: 10.1016/j.joms.2019.04.031.
[8]
Ngamsom S, Nakamura S, Sakamoto J, et al. The intravoxel incoherent motion MRI of lateral pterygoid muscle: a quantitative analysis in patients with temporomandibular joint disorders[J]. Dentomaxillofac Radiol, 2017, 46(5): 20160424. DOI: 10.1259/dmfr.20160424.
[9]
Hirahara N, Kaneda T, Muraoka H, et al. Quantitative assessment of the mandibular condyle in patients with rheumatoid arthritis using diffusion-weighted imaging[J]. J Oral Maxillofac Surg, 2021, 79(3): 546-550. DOI: 10.1016/j.joms.2020.10.007.
[10]
Liu SM, Wang M, Ai T, et al. In vivo morphological and functional evaluation of the lateral pterygoid muscle: a diffusion tensor imaging study[J]. Br J Radiol, 2016, 89(1064): 20160041. DOI: 10.1259/bjr.20160041.
[11]
Liu SM, Wan CH, Li HS, et al. Diffusion tensor imaging of the lateral pterygoid muscle in patients with temporomandibular joint disorders and healthy volunteers[J]. Korean J Radiol, 2022, 23(2): 218-225. DOI: 10.3348/kjr.2021.0132.
[12]
Nastro E, Bonanno L, Catalfamo L, et al. Diffusion tensor imaging reveals morphological alterations of the lateral pterygoid muscle in patients with mandibular asymmetry[J]. Dentomaxillofac Radiol, 2018, 47(1): 20170129. DOI: 10.1259/dmfr.20170129.
[13]
Mormina E, Granata F, Gaeta M, et al. Microstructural investigation of masticatory muscles: a pre- and post-treatment diffusion tensor imaging study in a bruxism case[J]. Dentomaxillofac Radiol, 2018, 47(5): 20170275. DOI: 10.1259/dmfr.20170275.
[14]
Bristela M, Skolka A, Eder J, et al. T2 mapping with 3.0 T MRI of the temporomandibular joint disc of patients with disc dislocation[J]. Magn Reson Imaging, 2019, 58: 125-134. DOI: 10.1016/j.mri.2019.02.002.
[15]
Nikkuni Y, Nishiyama H, Hayashi T. Clinical significance of T2 mapping MRI for the evaluation of masseter muscle pain in patients with temporomandibular joint disorders[J]. Oral Radiol, 2013, 29(1): 50-55. DOI: 10.1007/s11282-012-0108-y.
[16]
Nikkuni Y, Nishiyama H, Hyayashi T. The relationship between masseter muscle pain and T2 values in temporomandibular joint disorders[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2018, 126(4): 349-354. DOI: 10.1016/j.oooo.2018.06.003.
[17]
Yanagisawa O, Takahashi H, Fukubayashi T. Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging[J]. J Sports Sci, 2010, 28(11): 1157-1163. DOI: 10.1080/02640414.2010.504782.
[18]
Shigeno K, Sasaki Y, Otonari-Yamamoto M, et al. Evaluating the mandibular condyles of patients with osteoarthritis for bone marrow abnormalities using magnetic resonance T2 mapping[J]. Oral Radiol, 2019, 35(3): 272-279. DOI: 10.1007/s11282-018-0357-5.
[19]
Cao Y, Xia CC, Wang S, et al. Application of magnetic resonance T2 mapping in the temporomandibular joints[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012, 114(5): 644-649. DOI: 10.1016/j.oooo.2012.05.025.
[20]
Schmid-Schwap M, Bristela M, Pittschieler E, et al. Biochemical analysis of the articular disc of the temporomandibular joint with magnetic resonance T2 mapping: a feasibility study[J]. Clin Oral Investig, 2014, 18(7): 1865-1871. DOI: 10.1007/s00784-013-1154-5.
[21]
Kakimoto N, Shimamoto H, Kitisubkanchana J, et al. T2 relaxation times of the retrodiscal tissue in patients with temporomandibular joint disorders and in healthy volunteers: a comparative study[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 128(3): 311-318. DOI: 10.1016/j.oooo.2019.02.005.
[22]
Eder J, Tonar Z, Schmid-Schwap M, et al. Regional collagen fiber network in the articular disc of the human temporomandibular joint: biochemical 3-tesla quantitative magnetic resonance imaging compared to quantitative histologic analysis of fiber arrangement[J]. J Oral Facial Pain Headache, 2018, 32(3): 266-276. DOI: 10.11607/ofph.1879.
[23]
Kakimoto N, Shimamoto H, Chindasombatjaroen J, et al. Comparison of the T2 relaxation time of the temporomandibular joint articular disk between patients with temporomandibular disorders and asymptomatic volunteers[J]. AJNR Am J Neuroradiol, 2014, 35(7): 1412-1417. DOI: 10.3174/ajnr.A3880.
[24]
Zhao ZJ, Ge HZ, Xiang W, et al. Exploration of MRI T2 mapping image application in articular disc displacement of the temporomandibular joint in adolescents[J]. Int J Gen Med, 2021, 14: 6077-6084. DOI: 10.2147/IJGM.S330116.
[25]
Mars M, Chelli M, Tbini Z, et al. MRI T2 mapping of knee articular cartilage using different acquisition sequences and calculation methods at 1.5 tesla[J]. Med Princ Pract, 2018, 27(5): 443-450. DOI: 10.1159/000490796.
[26]
Reichert IL, Robson MD, Gatehouse PD, et al. Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences[J]. Magn Reson Imaging, 2005, 23(5): 611-618. DOI: 10.1016/j.mri.2005.02.017.
[27]
Carl M, Sanal HT, Diaz E, et al. Optimizing MR signal contrast of the temporomandibular joint disk[J]. J Magn Reson Imaging, 2011, 34(6): 1458-1464. DOI: 10.1002/jmri.22810.
[28]
Stumpf K, Kaye E, Paul J, et al. Two-dimensional UTE overview imaging for dental application[J]. Magn Reson Med, 2020, 84(5): 2616-2624. DOI: 10.1002/mrm.28312.
[29]
Jerban S, Chang DG, Ma YJ, et al. An update in qualitative imaging of bone using ultrashort echo time magnetic resonance[J]. Front Endocrinol (Lausanne), 2020, 11: 555756. DOI: 10.3389/fendo.2020.555756.
[30]
Larson PE, Han M, Krug R, et al. Ultrashort echo time and zero echo time MRI at 7T[J]. MAGMA, 2016, 29(3): 359-370. DOI: 10.1007/s10334-015-0509-0.
[31]
Bae WC, Tafur M, Chang EY, et al. High-resolution morphologic and ultrashort time-to-echo quantitative magnetic resonance imaging of the temporomandibular joint[J]. Skeletal Radiol, 2016, 45(3): 383-391. DOI: 10.1007/s00256-015-2305-3.
[32]
Bae WC, Biswas R, Statum S, et al. Sensitivity of quantitative UTE MRI to the biomechanical property of the temporomandibular joint disc[J]. Skeletal Radiol, 2014, 43(9): 1217-1223. DOI: 10.1007/s00256-014-1901-y.
[33]
Alkhader M, Ohbayashi N, Tetsumura A, et al. Diagnostic performance of magnetic resonance imaging for detecting osseous abnormalities of the temporomandibular joint and its correlation with cone beam computed tomography[J]. Dentomaxillofac Radiol, 2010, 39(5): 270-276. DOI: 10.1259/dmfr/25151578.
[34]
Lee CN, Jeon KJ, Han SS, et al. CT-like MRI using the zero-TE technique for osseous changes of the TMJ[J]. Dentomaxillofac Radiol, 2020, 49(3): 20190272. DOI: 10.1259/dmfr.20190272.
[35]
Geiger D, Bae WC, Statum S, et al. Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (μCT) evaluation of the temporomandibular joint (TMJ) condylar morphology[J]. Skeletal Radiol, 2014, 43(1): 19-25. DOI: 10.1007/s00256-013-1738-9.
[36]
Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system[J]. J Magn Reson Imaging, 2015, 41(4): 870-883. DOI: 10.1002/jmri.24713.
[37]
Pittschieler E, Szomolanyi P, Schmid-Schwap M, et al. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint: a feasibility study[J]. Magn Reson Imaging, 2014, 32(10): 1223-1229. DOI: 10.1016/j.mri.2014.08.008.
[38]
Eder J, Szomolanyi P, Schmid-Schwap M, et al. Early diagnosis of degenerative changes in the articular/fibrocartilaginous disc of the temporomandibular joint in patients with temporomandibular disorders using delayed gadolinium-enhanced MRI at 3 Tesla-preliminary results[J]. Magn Reson Imaging, 2020, 67: 24-27. DOI: 10.1016/j.mri.2019.12.002.
[39]
Tasali N, Cubuk R, Aricak M, et al. Temporomandibular joint (TMJ) pain revisited with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)[J]. Eur J Radiol, 2012, 81(3): 603-608. DOI: 10.1016/j.ejrad.2011.01.044.
[40]
Schraml C, Schwenzer NF, Martirosian P, et al. Temporal course of perfusion in human masseter muscle during isometric contraction assessed by arterial spin labeling at 3T[J]. MAGMA, 2011, 24(4): 201-209. DOI: 10.1007/s10334-011-0254-y.
[41]
Tamimi D, Kocasarac HD, Mardini S. Imaging of the temporomandibular joint[J]. Semin Roentgenol, 2019, 54(3): 282-301. DOI: 10.1053/j.ro.2019.03.007.
[42]
Manoliu A, Spinner G, Wyss M, et al. Comparison of a 32-channel head coil and a 2-channel surface coil for MR imaging of the temporomandibular joint at 3.0 T[J]. Dentomaxillofac Radiol, 2016, 45(4): 20150420. DOI: 10.1259/dmfr.20150420.

PREV Application and advances of magnetic resonance SNAP technique in craniocervical vessels
NEXT Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn