Share this content in WeChat
Research status and clinical applications of magnetic resonance imaging to evaluate the neurovascular relationship in primary hemifacial spasm
LÜ Gaoquan  CHEN Nan 

Cite this article as: Lü GQ, Chen N. Research status and clinical applications of magnetic resonance imaging to evaluate the neurovascular relationship in primary hemifacial spasm[J]. Chin J Magn Reson Imaging, 2022, 13(5): 140-143. DOI:10.12015/issn.1674-8034.2022.05.029.

[Abstract] Primary hemifacial spasm is the abnormal movement of facial muscles caused by the compression of facial nerve by blood vessels, which seriously affects patients' quality of life. The operation of microvascular decompression is the most effective method to treatment hemifacial spasm. High resolution imaging of the facial nerve and its ambient blood vessels was performed before surgery to accurately locate the compression site, providing the reference for making surgical plans and predicting surgical outcomes. The development of magnetic resonance neurovascular imaging sequence and post-processing technology provides an accurate image method for preoperative judgment of the relationship between facial nerve and vessels. This article reviews magnetic resonance cisternography and angiography techniques, image reconstruction and fusion techniques, clinical manifestations of vascular compression in different areas of facial nerve, the correlation between neurovascular relationship and surgical prognosis in patients with facial spasm.
[Keywords] cranial nerves;hemifacial spasm;neurovascular compression;magnetic resonance cisternography;magnetic resonance angiography;microvascular decompression surgery;image post-processing;root exit zone of facial nerve

LÜ Gaoquan1, 2   CHEN Nan1*  

1 Department of Radiation and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

2 Department of Radiology, Peking University People's Hospital, Beijing 100044, China

Chen N, E-mail:

Conflicts of interest   None.

Received  2021-11-24
Accepted  2022-04-29
DOI: 10.12015/issn.1674-8034.2022.05.029
Cite this article as: Lü GQ, Chen N. Research status and clinical applications of magnetic resonance imaging to evaluate the neurovascular relationship in primary hemifacial spasm[J]. Chin J Magn Reson Imaging, 2022, 13(5): 140-143. DOI:10.12015/issn.1674-8034.2022.05.029.

El Refaee E, Marx S, Rosenstengel C, et al. Arachnoid bands and venous compression as rare causes of hemifacial spasm: analysis of etiology in 353 patients[J]. Acta Neurochir (Wien), 2020, 162(1): 211-219. DOI: 10.1007/s00701-019-04119-5.
Hughes MA, Traylor KS, Branstetter Iv BF, et al. Imaging predictors of successful surgical treatment of hemifacial spasm[J]. Brain Commun, 2021, 3(3): fcab146. DOI: 10.1093/braincomms/fcab146.
Holste K, Sahyouni R, Teton Z, et al. Spasm freedom following microvascular decompression for hemifacial spasm: systematic review and meta-analysis[J]. World Neurosurg, 2020, 139: e383-e390. DOI: 10.1016/j.wneu.2020.04.001.
Hughes MA, Branstetter BF, Taylor CT, et al. MRI findings in patients with a history of failed prior microvascular decompression for hemifacial spasm: how to image and where to look[J]. AJNR Am J Neuroradiol, 2015, 36(4): 768-773. DOI: 10.3174/ajnr.A4174.
Bigder MG, Kaufmann AM. Failed microvascular decompression surgery for hemifacial spasm due to persistent neurovascular compression: an analysis of reoperations[J]. J Neurosurg, 2016, 124(1): 90-95. DOI: 10.3171/2015.1.JNS142714.
Lee S, Park SK, Lee JA, et al. Missed culprits in failed microvascular decompression surgery for hemifacial spasm and clinical outcomes of redo surgery[J]. World Neurosurg, 2019, 129: e627-e633. DOI: 10.1016/j.wneu.2019.05.231.
Jiang CR, Liang WB, Wang J, et al. Microvascular decompression for hemifacial spasm associated with distinct offending vessels: a retrospective clinical study[J]. Clin Neurol Neurosurg, 2020, 194: 105876. DOI: 10.1016/j.clineuro.2020.105876.
Sindou M, Mercier P. Microvascular decompression for hemifacial spasm: outcome on spasm and complications. A review[J]. Neurochirurgie, 2018, 64(2): 106-116. DOI: 10.1016/j.neuchi.2018.01.001.
Yue Y, Zhao ZR, Liu DC, et al. Life-threatening complications after microvascular decompression procedure: lessons from a consecutive series of 596 patients[J]. J Clin Neurosci, 2021, 86: 64-70. DOI: 10.1016/j.jocn.2021.01.014.
Ko HC, Lee SH, Shin HS. Proper head rotation when performing microvascular decompression for hemifacial spasm: an orthometric consideration based on preoperative MRI[J/OL]. J Neurol Surg A Cent Eur Neurosurg, 2022. (2022-2-15)[2022-4-23]. DOI: 10.1055/s-0041-1725950.
Öcal R, Tunç T, Ayas ZÖ, et al. Comparison of brain MRI angiography and brain MRI cisternography in patients with hemifacial spasm[J]. Acta Neurol Belg, 2016, 116(4): 593-598. DOI: 10.1007/s13760-016-0619-0.
di Stadio A, Dipietro L, Ralli M, et al. Loop characteristics and audio-vestibular symptoms or hemifacial spasm: is there a correlation? A multiplanar MRI study[J]. Eur Radiol, 2020, 30(1): 99-109. DOI: 10.1007/s00330-019-06309-2.
Sun W, Zhang SJ, Rao SX, et al. Etiological diagnosis value of MR 3D-SPACE sequence in patients with hemifacial spasm[J]. Chin Comput Med Imaging, 2019, 25(3): 217-221. DOI: 10.19627/j.cnki.cn31-1700/th.2019.03.001.
Chen SR. Neurological imaging for hemifacial spasm[J]. Int Ophthalmol Clin, 2018, 58(1): 97-109. DOI: 10.1097/IIO.0000000000000212.
Traylor KS, Sekula RF, Eubanks K, et al. Reply: neurovascular compression in hemifacial spasm[J]. Brain, 2021: awab339. DOI: 10.1093/brain/awab339.
Campos-Benitez M, Kaufmann AM. Neurovascular compression findings in hemifacial spasm[J]. J Neurosurg, 2008, 109(3): 416-420. DOI: 10.3171/JNS/2008/109/9/0416.
Gürün E, Akdulum İ, Kılıç P, et al. Evaluation of schwannoma using the 3D-SPACE sequence: comparison with the 3D-CISS sequence in 3T-MRI[J]. Turk J Med Sci, 2021, 51(3): 1123-1135. DOI: 10.3906/sag-2010-30.
Li L, Zhang H. Hemifacial spasm caused by a tortuous recurrent perforating artery: a case report[J]. Neuro-Chirurgie, 2021, 67(5): 487-490. DOI: 10.1016/j.neuchi.2021.03.015.
Li CX, Fu YG, Zhou X, et al. The application value of MR sequence in cranial neurovascular imaging[J]. Chin J Magn Reson Imaging, 2016, 7(3): 180-184. DOI: 10.12015/issn.1674-8034.2016.03.004.
Maderwald S, Ladd SC, Gizewski ER, et al. To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T[J]. Magn Reson Mater Phys Biol Med, 2008, 21(1/2): 159-167. DOI: 10.1007/s10334-007-0096-9.
Corrêa de Almeida Teixeira B, Ramina R, Montibeller GR. Image fusion in neurovascular compression syndrome related to hemifacial spasm[J]. World Neurosurg, 2021, 147: 125-127. DOI: 10.1016/j.wneu.2020.11.148.
Dai YF, Chen N, Li KC. Three-dimensional dual echo MR angiography and venography in diagnosing vascular compressive trigeminal neuralgia[J]. Chin J Med Imaging Technol, 2016, 32(11): 1649-1653. DOI: 10.13929/j.1003-3289.2016.11.005.
Gamaleldin OA, Donia MM, Elsebaie NA, et al. Role of fused three-dimensional time-of-flight magnetic resonance angiography and 3-dimensional T2-weighted imaging sequences in neurovascular compression[J]. World Neurosurg, 2020, 133: e180-e186. DOI: 10.1016/j.wneu.2019.08.190.
Chan LL, Tan EK. Neurovascular compression in hemifacial spasm[J]. Brain, 2021, 144(12): e91. DOI: 10.1093/brain/awab338.
Ozgen Mocan B. Imaging anatomy and pathology of the intracranial and intratemporal facial nerve[J]. Neuroimaging Clin N Am, 2021, 31(4): 553-570. DOI: 10.1016/j.nic.2021.06.001.
Iijima K, Horiguchi K, Yoshimoto Y. Microvascular decompression of the root emerging zone for hemifacial spasm: evaluation by fusion magnetic resonance imaging and technical considerations[J]. Acta Neurochir (Wien), 2013, 155(5): 855-862. DOI: 10.1007/s00701-013-1671-7.
Kasiri K, Clausi DA, Fieguth P. Multi-modal image registration using structural features[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 5550-5553. DOI: 10.1109/EMBC.2014.6944884.
Teton ZE, Blatt D, Holste K, et al. Utilization of 3D imaging reconstructions and assessment of symptom-free survival after microvascular decompression of the facial nerve in hemifacial spasm[J]. J Neurosurg, 2019, 133(2): 425-432. DOI: 10.3171/2019.4.JNS183207.
Shi HL, Li Y, Wang YZ, et al. The preoperative evaluation value of 3D-slicer program before microsurgical vascular decompression in patients with hemifacial spasm[J]. Clin Neurol Neurosurg, 2022, 217: 107241. DOI: 10.1016/j.clineuro.2022.107241.
Hastreiter P, Bischoff B, Fahlbusch R, et al. Data fusion and 3D visualization for optimized representation of neurovascular relationships in the posterior fossa[J/OL]. Acta Neurochir (Wien), 2022: 1-11(2022-1-11)[2022-4-23]. DOI: 10.1007/s00701-021-05099-1.
Tommy T, Sakarunchai I, Yamada Y, et al. The use of fusion images as a diagnostic and neurosurgical planning tool in microvascular decompression[J]. Asian J Neurosurg, 2021, 16(3): 562-566. DOI: 10.4103/ajns.AJNS_413_20.
Wang B, Zhang Y, Ming Y, et al. A segmentation-independent volume rendering visualisation method might reduce redundant explorations and post-surgical complications of microvascular decompression[J]. Eur Radiol, 2020, 30(7): 3823-3833. DOI: 10.1007/s00330-020-06715-x.
Tomii M, Onoue H, Yasue M, et al. Microscopic measurement of the facial nerve root exit zone from central glial myelin to peripheral Schwann cell myelin[J]. J Neurosurg, 2003, 99(1): 121-124. DOI: 10.3171/jns.2003.99.1.0121.
Iijima K, Tajika Y, Tanaka Y, et al. Microanatomy around the facial nerve pathway for microvascular decompression surgery investigated with correlative light microscopy and block-face imaging[J]. World Neurosurg, 2018, 118: e526-e533. DOI: 10.1016/j.wneu.2018.06.228.
Traylor KS, Sekula RF, Eubanks K, et al. Prevalence and severity of neurovascular compression in hemifacial spasm patients[J]. Brain, 2021, 144(5): 1482-1487. DOI: 10.1093/brain/awab030.
Lee S, Han J, Park SK, et al. Involvement of the vertebral artery in hemifacial spasm: clinical features and surgical strategy[J]. Sci Rep, 2021, 11(1): 4915. DOI: 10.1038/s41598-021-84347-x.
Yan XX, Gu JX, Quan JJ, et al. Anatomical deviations of vertebral artery in hemifacial spasm: a quantitative study[J]. Surg Radiol Anat, 2021, 43(2): 291-299. DOI: 10.1007/s00276-020-02603-7.
Ding SC, Yan X, Guo H, et al. Morphological characteristics of the vertebrobasilar artery system in patients with hemifacial spasm and measurement of bending length for evaluation of tortuosity[J]. Clin Neurol Neurosurg, 2020, 198: 106144. DOI: 10.1016/j.clineuro.2020.106144.
Son BC, Ko HC, Choi JG. Hemifacial spasm caused by vascular compression in the cisternal portion of the facial nerve: report of two cases with review of the literature[J]. Case Rep Neurol Med, 2019, 2019: 8526157. DOI: 10.1155/2019/8526157.
Liu J, Yuan Y, Fang Y, et al. Microvascular decompression for atypical hemifacial spasm: lessons learned from a retrospective study of 12 cases[J]. J Neurosurg, 2016, 124(2): 397-402. DOI: 10.3171/2015.3.JNS142501.
Ligas B, Khatri D, Higbie C, et al. Hemifacial spasm due to bony Stenosis of the internal auditory meatus: look beyond the loop[J]. World Neurosurg, 2020, 137: 179-182. DOI: 10.1016/j.wneu.2020.01.196.
Nomura K, Ryu H, Ohno K, et al. Wide distribution of central myelin segment along the facial nerve might explain hemifacial spasm with distal nerve compression[J]. Clin Anat, 2021, 34(3): 405-410. DOI: 10.1002/ca.23664.
Deep NL, Fletcher GP, Nelson KD, et al. Magnetic resonance imaging assessment of vascular contact of the facial nerve in the asymptomatic patient[J]. J Neurol Surg B Skull Base, 2016, 77(6): 503-509. DOI: 10.1055/s-0036-1584196.
Sekula RF, Frederickson AM, 4th Branstetter BF, et al. Thin-slice T2 MRI imaging predicts vascular pathology in hemifacial spasm: a case-control study[J]. Mov Disord, 2014, 29(10): 1299-1303. DOI: 10.1002/mds.25947.
Li ST, Feng BH, Xie CR, et al. Good surgical outcomes of hemifacial spasm patients with obvious facial nerve indentation and color change[J]. World Neurosurg, 2016, 92: 218-222. DOI: 10.1016/j.wneu.2016.05.012.
Ko HC, Lee SH, Shin HS. Facial nerve indentation in hemifacial spasm: an analysis of factors contributing to the formation of and consequent effects associated with indentation[J]. World Neurosurg, 2021, 146: e1083-e1091. DOI: 10.1016/j.wneu.2020.11.086.
Zhao K, Wang JW, Liu WH, et al. Flat-shaped posterior cranial fossa was associated with poor outcomes of microvascular decompression for primary hemifacial spasm[J]. Acta Neurochir (Wien), 2020, 162(11): 2801-2809. DOI: 10.1007/s00701-020-04547-8.
Zhu WC, Shen J, Tang TC, et al. Evaluation of pre-operative neuroimaging characteristics in patients with primary hemifacial spasm as a prognostic factor of microvascular decompression[J]. Clin Neurol Neurosurg, 2020, 195: 105874. DOI: 10.1016/j.clineuro.2020.105874.

PREV Application progress of high-resolution magnetic resonance imaging vascular wall imaging in ischemic stroke
NEXT Application and advances of magnetic resonance SNAP technique in craniocervical vessels

Tel & Fax: +8610-67113815    E-mail: