Share:
Share this content in WeChat
X
Clinical Article
Susceptibility-weighted imaging joint deep learning to explore the potential association between superficial cerebral veins and deep white matter lesions
WANG Yajie  XIE Qi  WU Jun  HAN Pengpeng  TAN Zhilin  LIAO Yanhui 

Cite this article as: Wang YJ, Xie Q, Wu J, et al. Susceptibility-weighted imaging joint deep learning to explore the potential association between superficial cerebral veins and deep white matter lesions[J]. Chin J Magn Reson Imaging, 2022, 13(5): 17-22. DOI:10.12015/issn.1674-8034.2022.05.004.


[Abstract] Objective To explore the relationship between superficial cerebral veins' (SCV) morphological parameters and deep white matter lesions (DWML) through establishing a deep learning algorithm model based on susceptibility-weighted imaging (SWI).Materials and Methods Three hundred and sixty-four healthy volunteers were recruited. All subjects underwent a routine head scan and SWI, SWI images of 200 subjects were randomly selected to reconstruct the minimum intensity projection (MinIP) image. The deep learning algorithms were used to analyze the MinIP images to establish the automatic quantification model of SCV morphological features. One hundred and sixty-four subjects were used for analyzing the morphological features of SCV in the bilateral cerebral hemispheres including diameter, tortuosity index (TI),and so on by using the deep learning models. According to whether there are DWML, the 164 subjects were divided into two groups including the group of DWML comprised 53 subjects and the group of no-deep white matter lesions (N-DWML) comprised 111subjects. The Mann-Whitney U test was used to compare the quantitative indicators of SCV between the group of DWML and N-DWML, and a binary logistic regression model was established for significant difference indicators and DWML.Results The training set's average accuracy rate of the deep learning algorithms model for analysis of SCV morphological features was 98.19%, the validation set's average accuracy rate was 98.02%, and the test set's average accuracy rate was 98.03%. There were no differences in the distribution of age and years of education in the quantitative indicators of SCV in bilateral cerebral hemispheres (P>0.05), but there were significant differences in the distribution of gender, which showed that the number of SCV in males was significantly more than that of females (Right: P=0.004, Left: P<0.001). No significant difference was found in the diameter and number of SCV in bilateral cerebral hemispheres between DWML group and N-DWML group (P>0.05). However, the TI of SCV in DWML group was significantly larger than N-DWML group (P<0.001). The TI of SCV in right cerebral hemisphere was significantly correlated with the occurrence of DWML (regression coefficient=2.035, P=0.015).Conclusions There is a potential correlation between the morphological changes of the SCV and the DWML. The changes in TI of the SCV may affect the local hemodynamic changes and lead to the occurrence of DWML.
[Keywords] susceptibility-weighted imaging;deep learning;magnetic resonance imaging;superficial cerebral veins;white matter lesions

WANG Yajie1   XIE Qi1*   WU Jun2   HAN Pengpeng2   TAN Zhilin1   LIAO Yanhui1  

1 Department of Imaging, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China

2 Institute of Software Application Technology, Guangzhou 511458, China

Xie Q, E-mail: eyqixie@scut.edu.cn

Conflicts of interest   None.

Received  2021-12-27
Accepted  2022-04-12
DOI: 10.12015/issn.1674-8034.2022.05.004
Cite this article as: Wang YJ, Xie Q, Wu J, et al. Susceptibility-weighted imaging joint deep learning to explore the potential association between superficial cerebral veins and deep white matter lesions[J]. Chin J Magn Reson Imaging, 2022, 13(5): 17-22.DOI:10.12015/issn.1674-8034.2022.05.004

[1]
McAleese KE, Miah M, Graham S,et al. Frontal white matter lesions in Alzheimer's disease are associated with both small vessel disease and AD-associated cortical pathology[J]. Acta Neuropathol, 2021, 142(6): 937-950. DOI: 10.1007/s00401-021-02376-2.
[2]
Caunca MR, Siedlecki K, Cheung YK, et al. Cholinergic White Matter Lesions, AD-Signature Cortical Thickness, and Change in Cognition: The Northern Manhattan Study[J]. J Gerontol A Biol Sci Med Sci, 2020, 75(8): 1508-1515. DOI: 10.1093/gerona/glz27.
[3]
Desmond DW. Cognition and white matter lesions[J]. Cerebrovasc Dis, 2002, 13(2): 53-57. DOI: 10.1159/000049151.
[4]
Pantoni L, Poggesi A, Inzitari D. The relation between white-matter lesions and cognition[J]. Curr Opin Neurol, 2007, 20(4): 390-397. DOI: 10.1097/WCO.0b013e328172d661.
[5]
Zang J, Shi J, Liang J, et al. Pulse pressure, cognition, and white matter lesions: a mediation analysis[J]. Front Cardiovasc Med, 2021, 8: 654522. DOI: 10.3389/fcvm.2021.654522.
[6]
Wang L, Leonards CO, Sterzer P, et al. White matter lesions and depression: a systematic review and meta-analysis[J]. J Psychiatr Res, 2014, 56: 56-64. DOI: 10.1016/j.jpsychires.2014.05.005.
[7]
Paradise DM. Commentary on: mechanisms linking white matter lesions, tract integrity and depression in Alzheimer's disease[J]. Am J Geriatr Psychiatry, 2019, 27(9): 960-962. DOI: 10.1016/j.jagp.2019.05.010.
[8]
Liu H, Deng B, Xie F, et al. The influence of white matter hyperintensity on cognitive impairment in Parkinson's disease[J]. Ann Clin Transl Neurol, 2021, 8(9): 1917-1934. DOI: 10.1002/acn3.51429.
[9]
Habes M, Sotiras A, Erus G, et al. White matter lesions: Spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy[J]. Neurology, 2018, 91(10): e964-e975. DOI: 10.1212/WNL.0000000000006116.
[10]
Yatawara C, Lee D, Ng KP, et al. Mechanisms linking white matter lesions, tract integrity, and depression in Alzheimer's disease[J]. Am J Geriatr Psychiatry, 2019, 27(9): 948-959. DOI: 10.1016/j.jagp.2019.04.004.
[11]
Hainsworth AH. White matter lesions in cerebral small vessel disease: Underperfusion or leaky vessels?[J]. Neurology, 2019, 92(15): 687-688. DOI: 10.1212/WNL.0000000000007258.
[12]
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. The Lancet Neurology, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
[13]
Hartmann DA, Hyacinth HI, Liao FF, et al. Does pathology of small venules contribute to cerebral microinfarcts and dementia?[J]. J Neurochem, 2018, 144(5): 517-526. DOI: 10.1111/jnc.14228.
[14]
Houck AL, Gutierrez J, Gao F, et al. Increased diameters of the internal cerebral veins and the basal veins of rosenthal are associated with white matter hyperintensity volume[J]. AJNR Am J Neuroradiol, 2019, 40(10): 1712-1718. DOI: 10.3174/ajnr.A6213.
[15]
Sati P, George IC, Shea CD, et al. FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins[J]. Radiology, 2012, 265(3): 926-932. DOI: 10.1148/radiol.12120208.
[16]
Zhang R, Zhou Y, Yan S, et al. A brain region-based deep medullary veins visual score on susceptibility weighted imaging[J]. Front Aging Neurosci, 2017, 9: 269. DOI: 10.3389/fnagi.2017.00269.
[17]
Cedres N, Ferreira D, Machado A, et al. Predicting Fazekas scores from automatic segmentations of white matter signal abnormalities[J]. Aging, 2020, 12(1): 894-901. DOI: 10.18632/aging.102662.
[18]
Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5T in Alzheimer's dementia and normal aging[J]. AJR Am J Roentgenol, 1987, 149(2): 351-356. DOI: 10.2214/ajr.149.2.351.
[19]
Halefoglu AM, Yousem DM. Susceptibility weighted imaging: Clinical applications and future directions[J]. World J Radiol, 2018, 10(4): 30-45. DOI: 10.4329/wjr.v10.i4.30.
[20]
Liu S, Buch S, Chen Y, et al. Susceptibility-weighted imaging: current status and future directions[J]. NMR Biomed, 2017, 30(4): e3552. DOI: 10.1002/nbm.3552.
[21]
Pérez EU, Armentia ES, Priegue NS, et al. Should susceptibility-weighted imaging be included in the basic protocol for magnetic resonance imaging of the brain?[J]. Radiología, 2020, 62(4): 320-326. DOI: 10.1016/j.rx.2019.12.006.
[22]
Aker L, Abandeh L, Abdelhady M, et al. Susceptibility-weighted Imaging in Neuroradiology: Practical Imaging Principles, Pearls and Pitfalls[J]. Curr Probl Diagn Radiol, 2021, 8: S0363-0188(21)00091-8. DOI: 10.1067/j.cpradiol.2021.05.001.
[23]
Zhang XF, Li JC, Wen XD, et al. Susceptibility-weighted imaging of the anatomic variation of thalamostriate vein and its tributaries[J]. PLoS One, 2015, 10(10): e0141513. DOI: 10.1371/journal.pone.0141513.
[24]
Shaaban CE, Aizenstein HJ, Jorgensen DR, et al. In vivo imaging of venous side cerebral small-vessel disease in older adults: an MRI method at 7T[J]. AJNR Am J Neuroradiol, 2017, 38(10): 1923-1928. DOI: 10.3174/ajnr.A5327.
[25]
Keith J, Gao FQ, Noor R, et al. Collagenosis of the Deep Medullary Veins: An Underrecognized Pathologic Correlate of White Matter Hyperintensities and Periventricular Infarction?[J]. J Neuropathol Exp Neurol, 2017, 76(4): 299-312. DOI: 10.1093/jnen/nlx009.
[26]
Egger K, Dempfle AK, Yang S, et al. Reliability of cerebral vein volume quantification based on susceptibility-weighted imaging[J]. Neuroradiology, 2016, 58(9): 937-942. DOI: 10.1007/s00234-016-1712-z.
[27]
Zhang S, Ma L, Wu C, et al. A rupture risk analysis of cerebral cavernous malformation associated with developmental venous anomaly using susceptibility-weighted imaging[J]. Neuroradiology, 2020, 62(1): 39-47. DOI: 10.1007/s00234-019-02274-1.
[28]
Guio FD, Vignaud A, Ropele S, et al. Loss of venous integrity in cerebral small vessel disease: a 7-T MRI study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL)[J]. Stroke, 2014, 45(7): 2124-2126. DOI: 10.1161/STROKEAHA.114.005726.
[29]
Yan S, Wan J, Zhang X, et al. Increased visibility of deep medullary veins in leukoaraiosis: a 3-T MRI study[J]. Front Aging Neurosci, 2014, 6: 144. DOI: 10.3389/fnagi.2014.00144.
[30]
Kuijf HJ, Bouvy WH, Zwanenburg JJ, et al. Quantification of deep medullary veins at 7 T brain MRI[J]. Eur Radiol, 2016, 26(10): 3412-3418. DOI: 10.1007/s00330-016-4220-y.
[31]
Bouvy WH, Kuijf HJ, Zwanenburg JJ, et al. Abnormalities of cerebral deep medullary veins on 7Tesla MRI in amnestic Mild Cognitive Impairment and early Alzheimer's disease: a pilot study[J]. J Alzheimers Dis, 2017, 57(3): 705-710. DOI: 10.3233/JAD-160952.
[32]
Darwish EAF, Abdelhameed-El-Nouby M, Geneidy E. Mapping the ischemic penumbra and predicting stroke progression in acute ischemic stroke: the overlooked role of susceptibility weighted imaging[J]. Insights Imaging, 2020, 11(1): 6. DOI: 10.1186/s13244-019-0810-y.
[33]
Iftikhar W, Cheema FF, Khanal S, et al. Migrainous Infarction and Cortical Spreading Depression[J]. Discoveries (Craiova), 2020, 8(3): e112. DOI: 10.15190/d.2020.9.
[34]
Iwasaki H, Takeda T, Ito T, et al. The use of susceptibility-weighted imaging for epileptic focus localization in acute-stage pediatric encephalopathy: a case report[J]. Pediatr Neurol, 2014, 50(2): 171-176. DOI: 10.1016/j.pediatrneurol.2013.09.004.
[35]
Yadav BK, Krishnamurthy U, Buch S, et al. Imaging putative foetal cerebral blood oxygenation using susceptibility weighted imaging (SWI)[J]. Eur Radiol, 2018, 28(5): 1884-1890. DOI: 10.1007/s00330-017-5160-x.
[36]
Garcia J, van der Palen RLF, Bollache E, et al. Distribution of blood flow velocity in the normal aorta: Effect of age and gender[J]. J Magn Reson Imaging, 2018, 47(2): 487-498. DOI: 10.1002/jmri.25773.
[37]
Zhang P, Huang Y, Li Y, et al. Gender and risk factor dependence of cerebral blood flow velocity in Chinese adults[J]. Brain Research Bulletin, 2006, 69(3): 282-287. DOI: 10.1016/j.brainresbull.2005.12.008.
[38]
Koch DW, Newcomer SC, Proctor DN. Blood flow to exercising limbs varies with age, gender, and training status[J]. Can J Appl Physiol, 2005, 30(5): 554-575. DOI: 10.1139/h05-141.
[39]
Ferro JM , Aguiar de Sousa D. Cerebral venous thrombosis: an update[J]. Curr Neurol Neurosci Rep, 2019, 19(10): 74. DOI: 10.1007/s11910-019-0988-x.
[40]
Silvis SM, de Sousa DA, Ferro JM, et al. Cerebral venous thrombosis[J]. Nat Rev Neurol, 2017, 13(9): 555-565. DOI: 10.1038/nrneurol.2017.104.
[41]
Bernhard S, Rudolf G, Yasuhiro S, et al. Hemodynamic changes after occlusion of the posterior superior sagittal sinus: an experimental PET study in cats[J]. AJNR Am J Neuroradiol, 2003, 24: 1876-1880.
[42]
Wallin A, Nordlund A, Jonsson M, et al. Alzheimer's disease-subcortical vascular disease spectrum in a hospital-based setting: Overview of results from the Gothenburg MCI and dementia studies[J]. J Cereb Blood Flow Metab, 2016, 36(1): 95-113. DOI: 10.1038/jcbfm.2015.148.
[43]
Lariviere S, Xifra-Porxas A, Kassinopoulos M, et al. Functional and effective reorganization of the aging brain during unimanual and bimanual hand movements[J]. Hum Brain Mapp, 2019, 40(10): 3027-3040. DOI: 10.1002/hbm.24578.

PREV Application value of TWIST technique in evaluating collateral circulation in acute ischemic stroke
NEXT Deep gray matter changes in relapsing-remitting multiple sclerosis detected by multimodal MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn