Share:
Share this content in WeChat
X
Reviews
Research progress of anterior cruciate ligament injury of knee using MRI: Based on deep learning
WANG Mei  XU Honggang  ZHANG Xiaodong 

Cite this article as: Wang M, Xu HG, Zhang XD. Research progress of anterior cruciate ligament injury of knee using MRI: Based on deep learning[J]. Chin J Magn Reson Imaging, 2022, 13(4): 166-170. DOI:10.12015/issn.1674-8034.2022.04.037.


[Abstract] Magnetic resonance imaging is the preferred non-invasive assessment method for anterior cruciate ligament injuries of the knee. At present, the diagnosis of anterior cruciate ligament injury mainly relies on the clinical experience of radiologists and is time-consuming and labor-intensive. Deep learning is an arising meaningful branch of machine learning, which uses neural networks as the architecture and characterizes data for learning. In recent years, the main application of deep learning in anterior cruciate ligament of the knee joint focused on anterior cruciate ligament segmentation and injury classification (including binary classification and multi-classification), but researches on segmentation of injured ligaments and prediction of related diseases are still in an initial stage. Nevertheless, deep learning can quickly achieve the automatic segmentation of anterior cruciate ligament and the classification assessment of anterior cruciate ligament injury simultaneously, which can significantly improve the productiveness of radiologists. In this paper, we review the research on MRI-based on deep learning in anterior cruciate ligament injuries of the knee.
[Keywords] deep learning;magnetic resonance imaging;anterior cruciate ligament;injury;progression;reviews

WANG Mei1   XU Honggang1   ZHANG Xiaodong2*  

1 Department of Radiology, Guangzhou First People's Hospital Nansha Hospital, Guangzhou 511458, China

2 Department of radiology, the Third Affiliated Hospital, Southern Medical University (Academy of orthopedics Guangzhou), Guangzhou 510630, China

Zhang XD, E-mail: ddautumn@126.com

Conflicts of interest   None.

Received  2022-01-01
Accepted  2022-03-23
DOI: 10.12015/issn.1674-8034.2022.04.037
Cite this article as: Wang M, Xu HG, Zhang XD. Research progress of anterior cruciate ligament injury of knee using MRI: Based on deep learning[J]. Chin J Magn Reson Imaging, 2022, 13(4): 166-170.DOI:10.12015/issn.1674-8034.2022.04.037

[1]
Zantop T, Petersen W, Sekiya JK, et al. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction[J]. Knee Surg Sports Traumatol Arthrosc, 2006, 14(10): 982-992. DOI: 10.1007/s00167-006-0076-z.
[2]
Spindler KP, Wright RW. Anterior cruciate ligament tear[J]. N Engl J Med, 2008, 359(20): 2135-2142. DOI: 10.1056/nejmcp0804745.
[3]
Gersing AS, Schwaiger BJ, Nevitt MC, et al. Anterior cruciate ligament abnormalities are associated with accelerated progression of knee joint degeneration in knees with and without structural knee joint abnormalities: 96-month data from the Osteoarthritis Initiative[J]. Osteoarthritis Cartilage, 2021, 29(7): 995-1005. DOI: 10.1016/j.joca.2021.03.011.
[4]
Lohmander LS, Ostenberg A, Englund M, et al. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury[J]. Arthritis Rheum, 2004, 50(10): 3145-3152. DOI: 10.1002/art.20589.
[5]
Yasaka K, Akai H, Kunimatsu A, et al. Deep learning with convolutional neural network in radiology[J]. Jpn J Radiol, 2018, 36(4): 257-272. DOI: 10.1007/s11604-018-0726-3.
[6]
Farabet C, Couprie C, Najman L, et al. Learning hierarchical features for scene labeling[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(8): 1915-1929. DOI: 10.1109/TPAMI.2012.231.
[7]
Li K, Wu XD, Chen DZ, et al. Optimal surface segmentation in volumetric images: a graph-theoretic approach[J]. IEEE Trans Pattern Anal Mach Intell, 2006, 28(1): 119-134. DOI: 10.1109/TPAMI.2006.19.
[8]
Wang YD, Song Y, Xie HB, et al. Reconstruction of under-sampled magnetic resonance image based on convolutional neural network[J]. Chin J Magn Reson Imaging, 2018, 9(6): 453-459. DOI: 10.12015/issn.1674-8034.2018.06.010.
[9]
McBee MP, Awan OA, Colucci AT, et al. Deep learning in radiology[J]. Acad Radiol, 2018, 25(11): 1472-1480. DOI: 10.1016/j.acra.2018.02.018.
[10]
Ranzato M, Mnih V, Susskind JM, et al. Modeling natural images using gated MRFs[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(9): 2206-2222. DOI: 10.1109/tpami.2013.29.
[11]
Sadad T, Khan AR, Hussain A, et al. Internet of medical things embedding deep learning with data augmentation for mammogram density classification[J]. Microsc Res Tech, 2021, 84(9): 2186-2194. DOI: 10.1002/jemt.23773.
[12]
Yamashita R, Nishio M, Do RKG, et al. Convolutional neural networks: an overview and application in radiology[J]. Insights Imaging, 2018, 9(4): 611-629. DOI: 10.1007/s13244-018-0639-9.
[13]
Choy G, Khalilzadeh O, Michalski M, et al. Current applications and future impact of machine learning in radiology[J]. Radiology, 2018, 288(2): 318-328. DOI: 10.1148/radiol.2018171820.
[14]
Guo Mg, Gong H. Research on AlexNet improvement and optimization method[J]. Comput Eng Appl, 2020, 56(20): 124-131. DOI: 10.3778/j.issn.1002-8331.1907-0135.
[15]
Xu BH, Ding C, Xu GZ. Research on the application of convolution neural network in the diagnosis of Alzheimer's disease[J]. J Biomed Eng, 2021, 38(1): 169-177, 184.
[16]
Almajalid R, Zhang M, Shan J. Fully automatic knee bone detection and segmentation on three-dimensional MRI[J]. Diagnostics (Basel), 2022, 12(1): 123. DOI: 10.3390/diagnostics12010123.
[17]
Byra M, Wu M, Zhang XD, et al. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning[J]. Magn Reson Med, 2020, 83(3): 1109-1122. DOI: 10.1002/mrm.27969.
[18]
Ambellan F, Tack A, Ehlke M, et al. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the Osteoarthritis Initiative[J]. Med Image Anal, 2019, 52: 109-118. DOI: 10.1016/j.media.2018.11.009.
[19]
Flannery SW, Kiapour AM, Edgar DJ, et al. Automated magnetic resonance image segmentation of the anterior cruciate ligament[J]. J Orthop Res, 2021, 39(4): 831-840. DOI: 10.1002/jor.24926.
[20]
Flannery SW, Kiapour AM, Edgar DJ, et al. A transfer learning approach for automatic segmentation of the surgically treated anterior cruciate ligament[J]. J Orthop Res, 2022, 40(1): 277-284. DOI: 10.1002/jor.24984.
[21]
Awan MJ, Rahim MSM, Salim N, et al. Automated knee MR images segmentation of anterior cruciate ligament tears[J]. Sensors (Basel), 2022, 22(4): 1552. DOI: 10.3390/s22041552.
[22]
Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet[J]. PLoS Med, 2018, 15(11): e1002699. DOI: 10.1371/journal.pmed.1002699.
[23]
Štajduhar I, Mamula M, Miletić D, et al. Semi-automated detection of anterior cruciate ligament injury from MRI[J]. Comput Methods Programs Biomed, 2017, 140: 151-164. DOI: 10.1016/j.cmpb.2016.12.006.
[24]
Liu F, Guan BC, Zhou ZY, et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning[J]. Radiol Artif Intell, 2019, 1(3): 180091. DOI: 10.1148/ryai.2019180091.
[25]
Chang PD, Wong TT, Rasiej MJ. Deep learning for detection of complete anterior cruciate ligament tear[J]. J Digit Imaging, 2019, 32(6): 980-986. DOI: 10.1007/s10278-019-00193-4.
[26]
Jeon Y, Yoshino K, Hagiwara S, et al. Interpretable and lightweight 3-D deep learning model for automated ACL diagnosis[J]. IEEE J Biomed Health Inform, 2021, 25(7): 2388-2397. DOI: 10.1109/JBHI.2021.3081355.
[27]
Li ZJ, Ren SY, Zhou R, et al. Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury[J]. J Healthc Eng, 2021, 2021: 4076175. DOI: 10.1155/2021/4076175.
[28]
Zhang LY, Li MF, Zhou YJ, et al. Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard[J]. J Magn Reson Imaging, 2020, 52(6): 1745-1752. DOI: 10.1002/jmri.27266.
[29]
Germann C, Marbach G, Civardi F, et al. Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-T and 3-T magnetic field strengths[J]. Invest Radiol, 2020, 55(8): 499-506. DOI: 10.1097/RLI.0000000000000664.
[30]
Namiri NK, Flament I, Astuto B, et al. Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from MRI[J]. Radiol Artif Intell, 2020, 2(4): e190207. DOI: 10.1148/ryai.2020190207.
[31]
Awan MJ, Rahim MSM, Salim N, et al. Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach[J]. Diagnostics (Basel), 2021, 11(1): 105. DOI: 10.3390/diagnostics11010105.
[32]
Astuto B, Flament I, Namiri N K, et al. Automatic deep learning-assisted detection and grading of abnormalities in knee MRI studies[J]. Radiol Artif Intell, 2021, 3(3): e200165. DOI: 10.1148/ryai.2021200165.
[33]
Awan MJ, Rahim MSM, Salim N, et al. Improved deep convolutional neural network to classify osteoarthritis from anterior cruciate ligament tear using magnetic resonance imaging[J]. J Pers Med, 2021, 11(11): 1163. DOI: 10.3390/jpm11111163.
[34]
Jin ZY. Application of artificial intelligence in medical imaging: reality and challenge [J]. Radiol Pract, 2018, 33(10): 989-991. DOI: 10.13609/j.cnki.1000-0313.2018.10.001.
[35]
Xiao Y, Liu SY. Objectively to treat the role of artificial intelligence in medical imaging[J]. Radiol Pract, 2018, 33(10): 992, 994. DOI: 10.13609/j.cnki.1000-0313.2018.10.002.

PREV Research progress of multimodal functional magnetic resonance imaging in high intensive focused ultrasound ablation of uterus myomas
NEXT A study of functional brain networks in patients with mild cognitive impairment based on graph theory
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn