Share:
Share this content in WeChat
X
Reviews
Research progress of rs-fMRI in brain ischemic white matter lesions
ZHANG Hui  DING Jurong  YAN Chengdong  FENG Chenyu  LI Yuan  LIU Yihong  ZHANG Yujiao  DING Xin 

Cite this article as: Zhang H, Ding JR, Yan CD, et al. Research progress of rs-fMRI in brain ischemic white matter lesions[J]. Chin J Magn Reson Imaging, 2022, 13(4): 154-157. DOI:10.12015/issn.1674-8034.2022.04.034.


[Abstract] Ischemic white matter lesions (WML) involves substantial damage to brain structure and function, which is common in elderly adults over 60 years old, mainly affecting cognitive function, motor function, and daily communication. However, the pathogenesis of WML is still unclear. Resting-state functional magnetic resonance imaging (rs-fMRI) is an emerging technology to detect spontaneous neural activity in the brain in resting state noninvasively, and is often used to study the pathological mechanism of cognitive and behavioral dysfunction in WML patients. This paper reviews the research progress of rs-fMRI analysis methods in WML, including regional homogeneity, functional connection, resting-state network, graph theory analysis, and amplitude of low-frequency fluctuation.
[Keywords] white matter lesions;resting-state functional magnetic resonance imaging;cognitive impairment;regional homogeneity;functional connectivity;amplitude of low-frequency fluctuation

ZHANG Hui1, 2   DING Jurong1, 2*   YAN Chengdong1   FENG Chenyu1   LI Yuan1   LIU Yihong1   ZHANG Yujiao3   DING Xin4  

1 College of Automation and Information Engineering, Sichuan University of Science & Engineering, Yibin 644000, China

2 Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China

3 School of Clinical Medicine, Chengdu Medical College, Chengdu 610000, China

4 Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, China

Ding JR, E-mail: jurongding@gmail.com

Conflicts of interest   None.

Received  2021-11-30
Accepted  2022-04-07
DOI: 10.12015/issn.1674-8034.2022.04.034
Cite this article as: Zhang H, Ding JR, Yan CD, et al. Research progress of rs-fMRI in brain ischemic white matter lesions[J]. Chin J Magn Reson Imaging, 2022, 13(4): 154-157.DOI:10.12015/issn.1674-8034.2022.04.034

[1]
Lin J, Wang D, Lan L, et al. Multiple Factors Involved in the Pathogenesis of White Matter Lesions[J]. Biomed Res Int, 2017, 2017: 9372050. DOI: 10.1155/2017/9372050.
[2]
Longstreth WT, Jr., Manolio TA, Arnold A, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study[J]. Stroke, 1996, 27(8): 1274-82. DOI: 10.1161/01.str.27.8.1274.
[3]
Franchetti MK, Bharadwaj PK, Nguyen LA, et al. Interaction of Age and Self-reported Physical Sports Activity on White Matter Hyperintensity Volume in Healthy Older Adults[J]. Front Aging Neurosci, 2020, 12: 576025. DOI: 10.3389/fnagi.2020.576025.
[4]
Skrobot OA, Attems J, Esiri M, et al. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment[J]. Brain, 2016, 139(11): 2957-2969. DOI: 10.1093/brain/aww214.
[5]
Dou HT, He M, Li X. Advances in neuroimaging and pathology of ischemic white matter lesions[J]. Nerve Injury and Functional Reconstruction, 2019, 14(10): 519-522.
[6]
Ding JR, Ding X, Hua B, et al. Abnormal functional connectivity density in patients with ischemic white matter lesions: An observational study[J]. Medicine (Baltimore), 2016, 95(36): e4625. DOI: 10.1097/MD.0000000000004625.
[7]
Smitha KA, Akhil Raja K, Arun KM, et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
[8]
Shan X, Qiu Y, Pan P, et al. Disrupted Regional Homogeneity in Drug-Naive Patients With Bipolar Disorder[J]. Front Psychiatry, 2020, 11: 825. DOI: 10.3389/fpsyt.2020.00825.
[9]
Ding X, Ding J, Hua B, et al. Abnormal cortical functional activity in patients with ischemic white matter lesions: A resting-state functional magnetic resonance imaging study[J]. Neurosci Lett, 2017, 644: 10-17. DOI: 10.1016/j.neulet.2017.02.015.
[10]
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease[J]. Ann N Y Acad Sci, 2008, 1124: 1-38. DOI: 10.1196/annals.1440.011.
[11]
Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain[J]. Nat Rev Neurosci, 2002, 3(3): 201-215. DOI: 10.1038/nrn755.
[12]
Qian S, Zhang J, Yan S, et al. Disrupted Anti-correlation Between the Default and Dorsal Attention Networks During Hyperthermia Exposure: An fMRI Study[J]. Front Hum Neurosci, 2020, 14: 564272. DOI: 10.3389/fnhum.2020.564272.
[13]
Gao W, Lin W. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks[J]. Hum Brain Mapp, 2012, 33(1): 192-202. DOI: 10.1002/hbm.21204.
[14]
Ye Q, Chen X, Qin R, et al. Enhanced Regional Homogeneity and Functional Connectivity in Subjects With White Matter Hyperintensities and Cognitive Impairment[J]. Front Neurosci, 2019, 13: 695. DOI: 10.3389/fnins.2019.00695.
[15]
Rizvi B, Narkhede A, Last BS, et al. The effect of white matter hyperintensities on cognition is mediated by cortical atrophy[J]. Neurobiol Aging, 2018, 64: 25-32. DOI: 10.1016/j.neurobiolaging.2017.12.006.
[16]
Swardfager W, Cogo-Moreira H, Masellis M, et al. The effect of white matter hyperintensities on verbal memory: Mediation by temporal lobe atrophy[J]. Neurology, 2018, 90(8): e673-e682. DOI: 10.1212/WNL.0000000000004983.
[17]
Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med, 1995, 34(4): 537-541. DOI: 10.1002/mrm.1910340409.
[18]
Ishibashi M, Kimura N, Aso Y, et al. Effects of white matter lesions on brain perfusion in patients with mild cognitive impairment[J]. Clin Neurol Neurosurg, 2018, 168: 7-11. DOI: 10.1016/j.clineuro.2018.02.030.
[19]
Chen X, Huang L, Ye Q, et al. Disrupted functional and structural connectivity within default mode network contribute to WMH-related cognitive impairment[J]. Neuroimage Clin, 2019, 24: 102088. DOI: 10.1016/j.nicl.2019.102088.
[20]
Kumar D, Vipin A, Wong B, et al. Differential Effects of Confluent and Nonconfluent White Matter Hyperintensities on Functional Connectivity in Mild Cognitive Impairment[J]. Brain Connect, 2020, 10(10): 547-554. DOI: 10.1089/brain.2020.0784.
[21]
Chen C, Wang X, Cao S, et al. Thalamocortical Functional Connectivity in Patients With White Matter Hyperintensities[J]. Front Aging Neurosci, 2021, 13: 632237. DOI: 10.3389/fnagi.2021.632237.
[22]
Tomasi D, Volkow ND. Functional connectivity density mapping[J]. Proc Natl Acad Sci U S A, 2010, 107(21): 9885-9890. DOI: 10.1073/pnas.1001414107.
[23]
Nudo RJ, Wise BM, Sifuentes F, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct[J]. Science, 1996, 272(5269): 1791-1794. DOI: 10.1126/science.272.5269.1791.
[24]
Hordacre B, Austin D, Brown KE, et al. Evidence for a Window of Enhanced Plasticity in the Human Motor Cortex Following Ischemic Stroke[J]. Neurorehabil Neural Repair, 2021, 35(4): 307-320. DOI: 10.1177/1545968321992330.
[25]
Edde M, Leroux G, Altena E, et al. Functional brain connectivity changes across the human life span: From fetal development to old age[J]. J Neurosci Res, 2021, 99(1): 236-262. DOI: 10.1002/jnr.24669.
[26]
Smith SM, Vidaurre D, Beckmann CF, et al. Functional connectomics from rs-fMRI[J]. Trends Cogn Sci, 2013, 17(12): 666-682. DOI: 10.1016/j.tics.2013.09.016.
[27]
Castellanos FX, Di Martino A, Craddock RC, et al. Clinical applications of the functional connectome[J]. Neuroimage, 2013, 80: 527-540. DOI: 10.1016/j.neuroimage.2013.04.083.
[28]
Ding JR, Zhu F, Hua B, et al. Presurgical localization and spatial shift of resting state networks in patients with brain metastases[J]. Brain Imaging Behav, 2019, 13(2): 408-420. DOI: 10.1007/s11682-018-9864-6.
[29]
Van Den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on rs-fMRI functional connectivity[J]. Eur Neuropsychopharmacol, 2010, 20(8): 519-534. DOI: 10.1016/j.euroneuro.2010.03.008.
[30]
Ding JR, Ding X, Hua B, et al. Altered connectivity patterns among resting state networks in patients with ischemic white matter lesions[J]. Brain Imaging Behav, 2018, 12(5): 1239-1250. DOI: 10.1007/s11682-017-9793-9.
[31]
Chen H, Li Y, Liu Q, et al. Abnormal Interactions of the Salience Network, Central Executive Network, and Default-Mode Network in Patients With Different Cognitive Impairment Loads Caused by Leukoaraiosis[J]. Front Neural Circuits, 2019, 13: 42. DOI: 10.3389/fncir.2019.00042.
[32]
Shi Q, Chen H, Jia Q, et al. Altered Granger Causal Connectivity of Resting-State Neural Networks in Patients With Leukoaraiosis-Associated Cognitive Impairment-A Cross-Sectional Study[J]. Front Neurol, 2020, 11: 457. DOI: 10.3389/fneur.2020.00457.
[33]
Vriend C, Wagenmakers MJ, Van Den Heuvel OA, et al. Resting-state network topology and planning ability in healthy adults[J]. Brain Struct Funct, 2020, 225(1): 365-374. DOI: 10.1007/s00429-019-02004-6.
[34]
Davis SW, Stanley ML, Moscovitch M, et al. Resting-state networks do not determine cognitive function networks: a commentary on Campbell and Schacter (2016)[J]. Lang Cogn Neurosci, 2017, 32(6): 669-673. DOI: 10.1080/23273798.2016.1252847.
[35]
Campbell KL, Schacter DL. Aging and the Resting State: Is Cognition Obsolete?[J]. Lang Cogn Neurosci, 2017, 32(6): 661-668. DOI: 10.1080/23273798.2016.1227858.
[36]
Yan RJ. Research progress of resting-stating functional MRI in patients with postherpetic neuralgia[J]. J Pract Radiol, 2018, 34(3): 459-462.
[37]
Chen H, Huang L, Yang D, et al. Nodal Global Efficiency in Front-Parietal Lobe Mediated Periventricular White Matter Hyperintensity (PWMH)-Related Cognitive Impairment[J]. Front Aging Neurosci, 2019, 11: 347. DOI: 10.3389/fnagi.2019.00347.
[38]
Sporns O, Zwi JD. The small world of the cerebral cortex[J]. Neuroinformatics, 2004, 2(2): 145-162. DOI: 10.1385/NI:2:2:145.
[39]
Liu H, Hu H, Wang H, et al. A Brain Network Constructed on an L1-Norm Regression Model Is More Sensitive in Detecting Small World Network Changes in Early AD[J]. Neural Plast, 2020, 2020: 9436406. DOI: 10.1155/2020/9436406.
[40]
Wang J, Chen Y, Liang H, et al. The Role of Disturbed Small-World Networks in Patients with White Matter Lesions and Cognitive Impairment Revealed by Resting State Function Magnetic Resonance Images (rs-fMRI)[J]. Med Sci Monit, 2019, 25: 341-356. DOI: 10.12659/MSM.913396.
[41]
Yang D, Huang L, Luo C, et al. Impaired Structural Network Properties Caused by White Matter Hyperintensity Related to Cognitive Decline[J]. Front Neurol, 2020, 11: 250. DOI: 10.3389/fneur.2020.00250.
[42]
Tan Y, Chen J, Liao W, et al. Brain Function Network and Young Adult Smokers: A Graph Theory Analysis Study[J]. Front Psychiatry, 2019, 10: 590. DOI: 10.3389/fpsyt.2019.00590.
[43]
Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev, 2007, 29(2): 83-91. DOI: 10.1016/j.braindev.2006.07.002.
[44]
Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for rs-fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
[45]
Li C, Yang J, Yin X, et al. Abnormal intrinsic brain activity patterns in leukoaraiosis with and without cognitive impairment[J]. Behav Brain Res, 2015, 292: 409-413. DOI: 10.1016/j.bbr.2015.06.033.
[46]
Wang J, Chen H, Liang H, et al. Low-Frequency Fluctuations Amplitude Signals Exhibit Abnormalities of Intrinsic Brain Activities and Reflect Cognitive Impairment in Leukoaraiosis Patients[J]. Med Sci Monit, 2019, 25: 5219-5228. DOI: 10.12659/MSM.915528.
[47]
Li Q, Zhao LQ, Hu FY. Characteristics of cognitive impairment and the resting state functional MRI in patients with leukoaraiosis[J]. Natl Med J China, 2017, 97(45): 3529-3533. DOI: 10.3760/cma.j.issn.0376-2491.2017.45.003.
[48]
Yokosawa K, Kimura K, Takase R, et al. Functional decline of the precuneus associated with mild cognitive impairment: Magnetoencephalographic observations[J]. PLoS One, 2020, 15(9): e0239577. DOI: 10.1371/journal.pone.0239577.
[49]
Cheng R, Qi H, Liu Y, et al. Abnormal amplitude of low-frequency fluctuations and functional connectivity of resting-state functional magnetic resonance imaging in patients with leukoaraiosis[J]. Brain Behav, 2017, 7(6): e00714. DOI: 10.1002/brb3.714.
[50]
Yang J, Li CM, Liu C, et al. Resting-state functional MRI in memory deficit of patients with ischemic white matter lesions and mild cognitive impairment[J]. Chin J Med Imaging Technol, 2015, 31(4): 512-517. DOI: 10.13929/j.1003-3289.2015.04.007.
[51]
Ding X, Wu J, Zhou Z, et al. Specific locations within the white matter and cortex are involved in the cognitive impairments associated with periventricular white matter lesions (PWMLs)[J]. Behav Brain Res, 2015, 289: 9-18. DOI: 10.1016/j.bbr.2015.04.021.
[52]
Toda K, Iijima M, Kitagawa K. Periventricular White Matter Lesions Influence Gait Functions in Parkinson's Disease[J]. Eur Neurol, 2019, 81(3-4): 120-127. DOI: 10.1159/000499908.
[53]
Agarwal S, Lu H, Pillai JJ. Value of Frequency Domain Resting-State Functional Magnetic Resonance Imaging Metrics Amplitude of Low-Frequency Fluctuation and Fractional Amplitude of Low-Frequency Fluctuation in the Assessment of Brain Tumor-Induced Neurovascular Uncoupling[J]. Brain Connect, 2017, 7(6): 382-389. DOI: 10.1089/brain.2016.0480.

PREV Progresses on the study of structural and functional MRI changes of cerebellum in patients with temporal lobe epilepsy
NEXT Research progress of deep learning and radiomics in glioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn