Share this content in WeChat
Progresses on the study of structural and functional MRI changes of cerebellum in patients with temporal lobe epilepsy
LI Jiachen  LIU Guangyao  HUANG Wenjing  LI Min  CHENG Xiu  LI Jie  ZHANG Jing 

Cite this article as: Li JC, Liu GY, Huang WJ, et al. Progresses on the study of structural and functional MRI changes of cerebellum in patients with temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(4): 150-153, 165. DOI:10.12015/issn.1674-8034.2022.04.033.

[Abstract] The pathogenesis of epilepsy is very complex and still not fully understood. The well-known mechanism is the imbalance of excitation and inhibition in the central nervous system. With the development of MRI technology, more and more studies use advanced imaging technology to explore the mechanism of epilepsy from the perspective of cerebellar structural and functional changes. Current studies have found changes in the structure and function of the cerebellum in patients with different types of epilepsy. This paper summarizes the previous studies on the abnormal changes in the structure and function of the cerebellum in patients with temporal lobe epilepsy (TLE). Changes in white matter pathways and cerebellum-hippocampal connections between the brains, functional connectivity impairments between the cerebellum and some cerebral regions, and the role of the cerebellum in networks such as the alertness network and the default mode network. The cerebellum is also associated with cognitive, executive control, language, and memory impairments in patients with TLE. There are also abnormalities in cerebellar perfusion and metabolism. The use of advanced MRI technology is expected to further clarify the role of the cerebellum in TLE, reveal the pathophysiological mechanism of TLE, and make the cerebellum a potential therapeutic target for TLE in the future.
[Keywords] temporal lobe epilepsy;cerebellum;magnetic resonance imaging;brain structure;brain function

LI Jiachen1, 2   LIU Guangyao1   HUANG Wenjing1, 2   LI Min1   CHENG Xiu1, 2   LI Jie1, 2   ZHANG Jing1*  

1 Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730030, China

Zhang J, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82160326).
Received  2021-12-20
Accepted  2022-03-25
DOI: 10.12015/issn.1674-8034.2022.04.033
Cite this article as: Li JC, Liu GY, Huang WJ, et al. Progresses on the study of structural and functional MRI changes of cerebellum in patients with temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2022, 13(4): 150-153, 165. DOI:10.12015/issn.1674-8034.2022.04.033.

Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 512-521. DOI: 10.1111/epi.13709.
Wang Y, Chen S, Wei P, et al. Stereotactic EEG-guided radiofrequency thermocoagulation versus anterior temporal lobectomy for mesial temporal lobe epilepsy with hippocampal sclerosis: study protocol for a randomised controlled trial[J]. Trials2021, 22(1): 425. DOI: 10.1186/s13063-021-05378-3.
Elsherif M, Esmael A. Hippocampal atrophy and quantitative EEG markers in mild cognitive impairment in temporal lobe epilepsy versus extra-temporal lobe epilepsy[J]. Neurological Sciences, 2022, 43(3): 1975-1986. DOI: 10.1007/s10072-021-05540-4.
Lopez C, Braga P. Clinico-electroencephalographic variants in pharmacoresistant mesial temporal lobe epilepsy[J]. Revista de Neurologia2019, 69(1): 18-26. DOI: 10.33588/rn.6901.2018328.
Strick P, Dum R, Fiez J. Cerebellum and nonmotor function[J]. Annual Review of Neuroscience, 2009, 32: 413-434. DOI: 10.1146/annurev.neuro.31.060407.125606.
Argyropoulos G, van Dun K, Adamaszek M, et al. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper[J]. Cerebellum, 2020, 19(1): 102-125. DOI: 10.1007/s12311-019-01068-8.
Miterko LN, Baker KB, Beckinghausen J, et al. Consensus Paper: Experimental Neurostimulation of the Cerebellum[J]. Cerebellum, 2019, 18(6): 1064-1097. DOI: 10.1007/s12311-019-01041-5.
Krook-Magnuson E, Szabo GG, Armstrong C, et al. Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy[J]. Eneuro, 2014, 1(1): 5-14. DOI: 10.1523/eneuro.0005-14.2014.
Streng ML, Krook-Magnuson E. The cerebellum and epilepsy[J]. Epilepsy & Behav, 2020: 106909. DOI: 10.1016/j.yebeh.2020.106909.
Streng ML, Krook‐Magnuson E. Excitation, but not inhibition, of the fastigial nucleus provides powerful control over temporal lobe seizures[J]. J Physiol, 2020, 598. DOI: 10.1113/JP278747.
Gharaylou Z, Shafaghi L, Oghabian M, et al. Longitudinal Effects of Bumetanide on Neuro-Cognitive Functioning in Drug-Resistant Epilepsy[J]. Front Neurol, 2019, 10: 483. DOI: 10.3389/fneur.2019.00483.
Jiang SS, Luo C, Huang Y, et al. Altered Static and Dynamic Spontaneous Neural Activity in Drug-Naive and Drug-Receiving Benign Childhood Epilepsy With Centrotemporal Spikes[J]. Frontiers in Human Neuroscience, 2020, 14. DOI: 10.3389/fnhum.2020.00361.
Thijs RD, Surges R, O'Brien TJ, et al. Epilepsy in adults[J]. Lancet, 2019, 393(10172): 689-701. DOI: 10.1016/s0140-6736(18)32596-0.
Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis[J]. Human brain mapping2005, 26(1): 15-29. DOI: 10.1002/hbm.20113.
Alvim MKM, Coan AC, Campos BM, et al. Progression of gray matter atrophy in seizure-free patients with temporal lobe epilepsy[J]. Epilepsia, 2016, 57(4): 621-629. DOI: 10.1111/epi.13334.
Hellwig S, Gutmann V, Trimble M, et al. Cerebellar volume is linked to cognitive function in temporal lobe epilepsy: a quantitative MRI study[J]. Epilepsy & Behav, 2013, 28(2): 156-162. DOI: 10.1016/j.yebeh.2013.04.020.
Riederer F, Lanzenberger R, Kaya M, et al. Network atrophy in temporal lobe epilepsy: a voxel-based morphometry study[J]. Neurology, 2008, 71(6): 419-425. DOI: 10.1212/01.wnl.0000324264.96100.e0.
Hao JR, Xu Q, Zhang QR, et al. Magnetic resonance imaging morphological study of the effects of juvenile febrile convulsions on the brain structure of medial temporal lobe epilepsy[J]. Natl Med J China, 2020, 100(27): 2121-2125. DOI: 10.3760/cma.j.cn112137-20200327-00144.
Marcian V, Marecek R, Pail M, et al. Cerebrocerebellar structural covariance in temporal lobe epilepsy with hippocampal sclerosis[J]. Epilepsy & Behav, 2020, 111. DOI: 10.1016/j.yebeh.2020.107180.
Marcian V, Marecek R, Koritakova E, et al. Morphological changes of cerebellar substructures in temporal lobe epilepsy: A complex phenomenon, not mere atrophy[J]. Seizure-European Journal of Epilepsy, 2018, 54: 51-57. DOI: 10.1016/j.seizure.2017.12.004.
Guo Q, Wei Z, Fan Z, et al. Quantitative analysis of cerebellar lobule morphology and clinical cognitive correlates in refractory temporal lobe epilepsy patients[J]. Epilepsy & Behav, 2021, 114. DOI: 10.1016/j.yebeh.2020.107553.
Park K, Han Y, Kim T, et al. Cerebellar white matter changes in patients with newly diagnosed partial epilepsy of unknown etiology[J]. Clinical Neurology and Neurosurgery, 2015, 138: 25-30. DOI: 10.1016/j.clineuro.2015.07.017.
Marcián V, Filip P, Bareš M, et al. Cerebellar Dysfunction and Ataxia in Patients with Epilepsy: Coincidence, Consequence, or Cause?[J]. Tremor and Other Hyperkinetic Movements (NY), 2016, 6: 376. DOI: 10.7916/D8KH0NBT.
Krauss G, Koubeissi M. Cerebellar and thalamic stimulation treatment for epilepsy[J]. Acta neurochirurgica Supplement2007, 97: 347-356. DOI: 10.1007/978-3-211-33081-4_40.
Riley J, Franklin D, Choi V, et al. Altered white matter integrity in temporal lobe epilepsy: association with cognitive and clinical profiles[J]. Epilepsia, 2010, 51(4): 536-545. DOI: 10.1111/j.1528-1167.2009.02508.x.
Slinger G, Sinke MRT, Braun KPJ, et al. White matter abnormalities at a regional and voxel level in focal and generalized epilepsy: A systematic review and meta-analysis[J]. Neuroimage-Clinical, 2016, 12: 902-909. DOI: 10.1016/j.nicl.2016.10.025.
Li X, Jiang Y, Li W, et al. Disrupted functional connectivity in white matter resting-state networks in unilateral temporal lobe epilepsy[J]. Brain Imaging and Behavior, 2021. DOI: 10.1007/s11682-021-00506-8.
Arrigo A, Mormina E, Anastasi G, et al. Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway[J]. Frontiers in Human Neuroscience, 2014, 8: 987. DOI: 10.3389/fnhum.2014.00987.
Watson T, Obiang P, Torres-Herraez A, et al. Anatomical and physiological foundations of cerebello-hippocampal interaction[J]. eLife, 2019, 8. DOI: 10.7554/eLife.41896.
Yu W, Krook-Magnuson E. Cognitive Collaborations: Bidirectional Functional Connectivity Between the Cerebellum and the Hippocampus[J]. Frontiers in Systems Neuroscience, 2015, 9: 177. DOI: 10.3389/fnsys.2015.00177.
Rondi-Reig L. The cerebellum on the epilepsy frontline[J]. Trends in Neurosciences, 2022. DOI: 10.1016/j.tins.2022.02.003.
Quan W, Zhang ZQ. Imaging study of normal MRI negative epilepsy[J]. Radiol Prac, 2018, 33(6): 642-645. DOI: 10.13609/j.cnki.1000-0313.2018.06.020.
Nie L, Jiang Y, Lv Z, et al. Deep Cerebellar Nuclei Functional Connectivity with Cerebral Cortex in Temporal Lobe Epilepsy With and Without Focal to Bilateral Tonic-Clonic Seizures: a Resting-State fMRI Study[J]. Cerebellum, 2021. DOI: 10.1007/s12311-021-01266-3.
Zhou X, Zhang Z, Liu J, et al. Disruption and lateralization of cerebellar-cerebral functional networks in right temporal lobe epilepsy: A resting-state fMRI study[J]. Epilepsy & Behav, 2019, 96: 80-86. DOI: 10.1016/j.yebeh.2019.03.020.
Abbasi B, Goldenholz DM. Machine learning applications in epilepsy[J]. Epilepsia, 2019, 60(10): 2037-2047. DOI: 10.1007/s00330-019-5997-2.
Zheng J, Qin B, Dang C, et al. Alertness network in patients with temporal lobe epilepsy: a fMRI study[J]. Epilepsy Research, 2012, 100: 67-73. DOI: 10.1016/j.eplepsyres.2012.01.006.
Chen X, Huang D, Chen Z, et al. Temporal lobe epilepsy: decreased thalamic resting-state functional connectivity and their relationships with alertness performance[J]. Epilepsy & Behav, 2015, 44: 47-54. DOI: 10.1016/j.yebeh.2014.12.013.
Zhou X, Liu J, Zhang Z, et al. Aberrant cerebral intrinsic activity and cerebro-cerebellar functional connectivity in right temporal lobe epilepsy: a resting-state functional MRI study[J]. NeuroReport, 2021, 32(12): 1009-1016. DOI: 10.1097/wnr.0000000000001681.
Singh TB, Aisikaer A, He C, et al. The Assessment of Brain Functional Changes in the Temporal Lobe Epilepsy Patient with Cognitive Impairment by Resting-state Functional Magnetic Resonance Imaging[J]. Journal of Clinical Imaging Science, 2020, 10. DOI: 10.25259/jcis_55_2020.
Hu CY, Gao X, Long L, et al. Altered DMN functional connectivity and regional homogeneity in partial epilepsy patients: a seventy cases study[J]. Oncotarget, 2017, 8(46): 81475-81484. DOI: 10.18632/oncotarget.20575.
Leggio M, Silveri M, Petrosini L, et al. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2000, 69(1): 102-106. DOI: 10.1136/jnnp.69.1.102.
Brissenden J, Levin E, Osher D, et al. Functional Evidence for a Cerebellar Node of the Dorsal Attention Network[J]. The Journal of Neuroscience, 2016, 36(22): 6083-6096. DOI: 10.1523/jneurosci.0344-16.2016.
Marvel C, Desmond J. Functional topography of the cerebellum in verbal working memory[J]. Neuropsychology Review, 2010, 20(3): 271-279. DOI: 10.1007/s11065-010-9137-7.
Jiang L, Qian R, Fu X, et al. Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study[J]. Epilepsy & Behav, 2018, 88: 81-86. DOI: 10.1016/j.yebeh.2018.06.045.
Zhou S, Xiong P, Ren H, et al. Aberrant dorsal attention network homogeneity in patients with right temporal lobe epilepsy[J]. Epilepsy & Behav, 2020, 111: 107278. DOI: 10.1016/j.yebeh.2020.107278.
Liu JR. Alterations in functional connectivity of the cerebellum in temporal lobe epilepsy[D]. Guangzhou University of Chinese Medicine, 2018.
Li R, Hu C, Wang L, et al. Disruption of functional connectivity among subcortical arousal system and cortical networks in temporal lobe epilepsy[J]. Brain Imaging and Behavior, 2020, 14(3): 762-771. DOI: 10.1007/s11682-018-0014-y.
Hao S, Yang C, Li Z, et al. Distinguishing patients with temporal lobe epilepsy from normal controls with the directed graph measures of resting-state fMRI[J]. Seizure, 2022, 96: 25-33. DOI: 10.1016/j.seizure.2022.01.007.
Mittal A, Singh Dhanota D, Saggar K, et al. Role of Interictal Arterial Spin Labeling Magnetic Resonance Perfusion in Mesial Temporal Lobe Epilepsy[J]. Annals of Indian Academy of Neurology, 2021, 24(4): 495-500. DOI: 10.4103/aian.AIAN_1274_20.
Oner A, Eryurt B, Ucar M, et al. pASL versus DSC perfusion MRI in lateralizing temporal lobe epilepsy[J]. Acta Radiol, 2015, 56(4): 477-481. DOI: 10.1177/0284185114531128.
Damián A, Legnani M, Rada D, et al. SPECT activation patterns in psychogenic non-epileptic seizures in temporal lobe epilepsy patients[J]. Seizure, 2021. DOI: 10.1016/j.seizure.2021.02.030.
Dupont P, Zaknun J, Maes A, et al. Dynamic perfusion patterns in temporal lobe epilepsy[J]. Eur J Nucl Med Mol I, 2009, 36(5): 823-830. DOI: 10.1007/s00259-008-1040-6.
Van Paesschen W, Dupont P, Van Driel G, et al. SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis[J]. Brain, 126: 1103-1111. DOI: 10.1093/brain/awg108.
Sone D, Maikusa N, Sato N, et al. Similar and Differing Distributions Between 18F-FDG-PET and Arterial Spin Labeling Imaging in Temporal Lobe Epilepsy[J]. Front Neurol, 2019, 10(318). DOI: 10.3389/fneur.2019.00318.
Galazzo IB, Storti SF, Barnes A, et al. Arterial Spin Labeling Reveals Disrupted Brain Networks and Functional Connectivity in Drug-Resistant Temporal Epilepsy[J]. Frontiers in Neuroinformatics, 2019, 12. DOI: 10.3389/fninf.2018.00101.
Lee D, Lee H, Kim H, et al. Temporal lobe epilepsy with or without hippocampal sclerosis: Structural and functional connectivity using advanced MRI techniques[J]. Journal of Neuroimaging, 2021. DOI: 10.1111/jon.12898.

PREV Research progress of cerebellar structure and functional magnetic resonance imaging in Parkinson,s disease
NEXT Research progress of rs-fMRI in brain ischemic white matter lesions

Tel & Fax: +8610-67113815    E-mail: