Share:
Share this content in WeChat
X
Reviews
Research progress of cerebellar structure and functional magnetic resonance imaging in Parkinson's disease
CHENG Xiu  ZHANG Pengfei  WANG Jun  WANG Jin  LI Jiachen  LI Jie  ZHANG Jing 

Cite this article as: Cheng X, Zhang PF, Wang J, et al. Research progress of cerebellar structure and functional magnetic resonance imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2022, 13(4): 146-149. DOI:10.12015/issn.1674-8034.2022.04.032.


[Abstract] Parkinson's disease (PD) is the second largest neurodegenerative disease after Alzheimer's disease. It is considered a "classic" basal ganglia disease, so most research on PD has focused on the basal ganglia, while the cerebellum is often overlooked. In recent years, more and more anatomical, pathophysiological and clinical evidences have shown that the cerebellum plays a very important role in the occurrence and development of PD. With the rapid development of MRI technology, more and more scholars have found that there are obvious changes in the cerebellar structure and functional MRI of PD patients, and these changes are related to movement, cognition, sleep function, etc. This paper summarizes the changes of cerebellar structure and functional MRI in PD patients. The results show that there are obvious gray matter atrophy, white matter microstructure changes, abnormalities in spontaneous neuronal activity and changes in perfusion patterns, etc. in the cerebellum of PD patients. However, so far, studies on the structural and functional MRI changes of the cerebellum in PD patients have shown great heterogeneity, and there is no PD-specific atrophy pattern or related specific imaging indicators. In the future, it is expected to search for sensitive neuroimaging biomarkers for early diagnosis of PD from the perspective of the cerebellum.
[Keywords] Parkinson's disease;pathological mechanism;cerebellum;magnetic resonance imaging;resting-state functional magnetic resonance imaging;diffusion tensor imaging;brain structure;brain function

CHENG Xiu1, 2   ZHANG Pengfei1, 2   WANG Jun1, 2   WANG Jin1, 2   LI Jiachen1, 2   LI Jie1, 2   ZHANG Jing1*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 The Second Clinical Medicine College of Lanzhou University, Lanzhou 730030, China

Zhang J, E-mail: lztong2001@163.com

Conflicts of interest   None.

Received  2021-10-20
Accepted  2022-04-01
DOI: 10.12015/issn.1674-8034.2022.04.032
Cite this article as: Cheng X, Zhang PF, Wang J, et al. Research progress of cerebellar structure and functional magnetic resonance imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2022, 13(4): 146-149.DOI:10.12015/issn.1674-8034.2022.04.032

[1]
Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics[J]. Int J Mol Sci, 2017, 18(3): 551. DOI: 10.3390/ijms18030551.
[2]
Soukup SF, Vanhauwaert R, Verstreken P. Parkinson's disease: convergence on synaptic homeostasis[J]. EMBO J, 2018, 37(18): e98960. DOI: 10.15252/embj.201898960.
[3]
Tysnes OB, Storstein A. Epidemiology of Parkinson's disease[J]. J Neural Transm (Vienna), 2017, 124(8): 901-905. DOI: 10.1007/s00702-017-1686-y.
[4]
Andica C, Kamagata K, Hatano T, et al. MR Biomarkers of Degenerative Brain Disorders Derived From Diffusion Imaging[J]. J Magn Reson Imaging, 2020, 52(6): 1620-1636. DOI: 10.1002/jmri.27019.
[5]
Mirdamadi JL. Cerebellar role in Parkinson's disease[J]. J Neurophysiol, 2016, 116(3): 917-919. DOI: 10.1152/jn.01132.2015.
[6]
Ma X, Su W, Li S, et al. Cerebellar atrophy in different subtypes of Parkinson's disease[J]. J Neurol Sci, 2018, 392: 105-112. DOI: 10.1016/j.jns.2018.06.027.
[7]
Luo C, Song W, Chen Q, et al. White matter microstructure damage in tremor-dominant Parkinson's disease patients[J]. Neuroradiology, 2017, 59(7): 691-698. DOI: 10.1007/s00234-017-1846-7.
[8]
Samson M, Claassen DO. Neurodegeneration and the Cerebellum[J]. Neurodegener Dis, 2017, 17(4-5): 155-165. DOI: 10.1159/000460818
[9]
Wu T, Hallett M. The cerebellum in Parkinson's disease[J]. Brain, 2013, 136(Pt 3): 696-709. DOI: 10.1093/brain/aws360.
[10]
Seidel K, Bouzrou M, Heidemann N, et al. Involvement of the cerebellum in Parkinson disease and dementia with Lewy bodies[J]. Ann Neurol, 2017, 81(6): 898-903. DOI: 10.1002/ana.24937.
[11]
Hurley MJ, Mash DC, Jenner P. Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson's disease examined by RT-PCR[J]. Eur J Neurosci, 2003, 18(9): 2668-2672. DOI: 10.1046/j.1460-9568.2003.02963.x.
[12]
Lopez AM, Trujillo P, Hernandez AB, et al. Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor[J]. Mov Disord, 2020, 35(7): 1181-1188. DOI: 10.1002/mds.28044.
[13]
Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function[J]. Annu Rev Neurosci, 2009, 32: 413-434. DOI: 10.1146/annurev.neuro.31.060407.125606.
[14]
Koziol LF, Budding D, Andreasen N, et al. Consensus paper: the cerebellum's role in movement and cognition[J]. Cerebellum, 2014, 13(1): 151-177. DOI: 10.1007/s12311-013-0511-x.
[15]
Burciu RG, Ofori E, Archer DB, et al. Progression marker of Parkinson's disease: a 4-year multi-site imaging study[J]. Brain, 2017, 140(8): 2183-2192. DOI: 10.1093/brain/awx146.
[16]
Solstrand Dahlberg L, Lungu O, Doyon J. Cerebellar Contribution to Motor and Non-motor Functions in Parkinson's Disease: A Meta-Analysis of fMRI Findings[J]. Front Neurol, 2020, 11: 127. DOI: 10.3389/fneur.2020.00127.
[17]
Benninger DH, Thees S, Kollias SS, et al. Morphological differences in Parkinson's disease with and without rest tremor[J]. J Neurol, 2009, 256(2): 256-263. DOI: 10.1007/s00415-009-0092-2.
[18]
Van Den Berg KRE, Helmich RC. The Role of the Cerebellum in Tremor-Evidence from Neuroimaging[J]. Tremor Other Hyperkinet Mov (NY), 2021, 11: 49. DOI: 10.5334/tohm.660.
[19]
Workman CD, Fietsam AC, Uc EY, et al. Cerebellar Transcranial Direct Current Stimulation in People with Parkinson's Disease: A Pilot Study[J]. Brain Sci, 2020, 10(2): 96. DOI: 10.3390/brainsci10020096.
[20]
Gellersen HM, Guo CC, O'Callaghan C, et al. Cerebellar atrophy in neurodegeneration-a meta-analysis[J]. J Neurol Neurosurg Psychiatry, 2017, 88(9): 780-788. DOI: 10.1136/jnnp-2017-315607.
[21]
Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for Parkinson's Disease: Recent Advancement[J]. Neurosci Bull, 2017, 33(5): 585-597. DOI: 10.1007/s12264-017-0183-5.
[22]
O'Callaghan C, Hornberger M, Balsters JH, et al. Cerebellar atrophy in Parkinson's disease and its implication for network connectivity[J]. Brain, 2016, 139(Pt 3): 845-855. DOI: 10.1093/brain/awv399.
[23]
Cui X, Li L, Yu L, et al. Gray Matter Atrophy in Parkinson's Disease and the Parkinsonian Variant of Multiple System Atrophy: A Combined ROI- and Voxel-Based Morphometric Study[J]. Clinics (Sao Paulo), 2020, 75: e1505. DOI: 10.6061/clinics/2020/e1505.
[24]
Li K, Zhang XF, Yue P, et al. VBM study on the changes of brain gray matter volume in Parkinson's disease[J]. J Pract Radiol, 2017, 33(7): 988-991. DOI: 10.3969/j.issn.1002-1671.2017.07.002.
[25]
Rosenberg-Katz K, Herman T, Jacob Y, et al. Gray matter atrophy distinguishes between Parkinson disease motor subtypes[J]. Neurology, 2013, 80(16): 1476-1484. DOI: 10.1212/WNL.0b013e31828cfaa4.
[26]
Ranzenberger LR, Snyder T. Diffusion Tensor Imaging[M]. StatPearls. Treasure Island (FL); StatPearls Publishing Copyright© 2021, StatPearls Publishing LLC. 2021.
[27]
Barbagallo G, Caligiuri ME, Arabia G, et al. Structural connectivity differences in motor network between tremor-dominant and nontremor Parkinson's disease[J]. Hum Brain Mapp, 2017, 38(9): 4716-4729. DOI: 10.1002/hbm.23697.
[28]
Yu JM, Li MY, Zhou J, et al. The clinical value of MRI diffusion tensor imaging in the diagnosis of Parkinson's disease[J]. Modern Hospital, 2019, 4(19): 600-604. DOI: 10.3969/j.issn.1671-332X.2019.04.039.
[29]
Kamagata K, Hatano T, Aoki S. What is NODDI and what is its role in Parkinson's assessment?[J]. Expert Rev Neurother, 2016, 16(3): 241-243. DOI: 10.1586/14737175.2016.1142876.
[30]
Liu WX, Lu P, Zhang XB, et al. The clinical application of magnetic resonance neurite orientation dispersion and density imaging in the putamen disease of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2020, 11(8): 610-614. DOI: 10.12015/issn.1674-8034.2020.08.003
[31]
Mitchell T, Archer DB, Chu WT, et al. Neurite orientation dispersion and density imaging (NODDI) and free-water imaging in Parkinsonism[J]. Hum Brain Mapp, 2019, 40(17): 5094-5107. DOI: 10.1002/hbm.24760.
[32]
Kamiya K, Hori M, Aoki S. NODDI in clinical research[J]. J Neurosci Methods, 2020, 346: 108908. DOI: 10.1016/j.jneumeth.2020.108908.
[33]
Kamagata K, Hatano T, Okuzumi A, et al. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease[J]. Eur Radiol, 2016, 26(8): 2567-2577. DOI: 10.1007/s00330-015-4066-8.
[34]
Andica C, Kamagata K, Hatano T, et al. Neurite orientation dispersion and density imaging of the nigrostriatal pathway in Parkinson's disease: Retrograde degeneration observed by tract-profile analysis[J]. Parkinsonism Relat Disord, 2018, 51: 55-60. DOI: 10.1016/j.parkreldis.2018.02.046.
[35]
Ma DH,Liu CC,Huang XP,et al. Magnetic resonance neurite orientation dispersion and density imaging techniques to evaluate the microstructure changes of the cerebellum in patients with Parkinson's[J]. Journal of Molecular Imaging, 2021, 44(1): 22-26. DOI: 10.12122/j.issn.1674-4500.2021.01.04.
[36]
Fujima N, Carlota Andreu-Arasa V, Barest GD, et al. Magnetic Resonance Spectroscopy of the Head and Neck: Principles, Applications, and Challenges[J]. Neuroimaging Clin N Am, 2020, 30(3): 283-293. DOI: 10.1016/j.nic.2020.04.006.
[37]
O'Gorman Tuura RL, Baumann CR, Baumann-Vogel H. Beyond Dopamine: GABA, Glutamate, and the Axial Symptoms of Parkinson Disease[J]. Front Neurol, 2018, 9: 806. DOI: 10.3389/fneur.2018.00806.
[38]
Murueta-Goyena A, Andikoetxea A, Gómez-Esteban JC, et al. Contribution of the GABAergic System to Non-Motor Manifestations in Premotor and Early Stages of Parkinson's Disease[J]. Front Pharmacol, 2019, 10: 1294. DOI: 10.3389/fphar.2019.01294.
[39]
Halliday GM, Leverenz JB, Schneider JS, et al. The neurobiological basis of cognitive impairment in Parkinson's disease[J]. Mov Disord, 2014, 29(5): 634-650. DOI: 10.1002/mds.25857.
[40]
Piras F, Vecchio D, Assogna F, et al. Cerebellar GABA Levels and Cognitive Interference in Parkinson's disease and Healthy Comparators[J]. J Pers Med, 2020, 11(1): 16. DOI: 10.3390/jpm11010016.
[41]
Klietz M, Bronzlik P, Nösel P, et al. Altered Neurometabolic Profile in Early Parkinson's Disease: A Study With Short Echo-Time Whole Brain MR Spectroscopic Imaging[J]. Front Neurol, 2019, 10: 777. DOI: 10.3389/fneur.2019.00777.
[42]
Yu CC, Chen MH, Lu CH, et al. Altered Striatocerebellar Metabolism and Systemic Inflammation in Parkinson's Disease[J]. Oxid Med Cell Longev, 2016. DOI: 10.1155/2016/1810289.
[43]
Ciurleo R, Di Lorenzo G, Bramanti P, et al. Magnetic resonance spectroscopy: an in vivo molecular imaging biomarker for Parkinson's disease?[J]. Biomed Res Int, 2014. DOI: 10.1155/2014/519816.
[44]
Griffith B, Jain R. Perfusion Imaging in Neuro-Oncology: Basic Techniques and Clinical Applications[J]. Magn Reson Imaging Clin N Am, 2016, 24(4): 765-79. DOI: 10.1016/j.mric.2016.07.004.
[45]
Liu ZX, Zhang YW, Wang H, et al. Altered cerebral perfusion and microstructure in advanced Parkinson's disease and their associations with clinical features[J]. Neurol Res, 2022, 44(1): 47-56. DOI: 10.1080/01616412.2021.1954842.
[46]
Erro R, Ponticorvo S, Manara R, et al. Subcortical atrophy and perfusion patterns in Parkinson disease and multiple system atrophy[J]. Parkinsonism Relat Disord, 2020, 72: 49-55. DOI: 10.1016/j.parkreldis.2020.02.009.
[47]
Yao Q, Zhu D, Li F, et al. Altered Functional and Causal Connectivity of Cerebello-Cortical Circuits between Multiple System Atrophy (Parkinsonian Type) and Parkinson's Disease[J]. Front Aging Neurosci, 2017, 9: 266. DOI: 10.3389/fnagi.2017.00266.
[48]
Maiti B, Koller JM, Snyder AZ, et al. Cognitive correlates of cerebellar resting-state functional connectivity in Parkinson disease[J]. Neurology, 2020, 94(4): e384-e396. DOI: 10.1212/WNL.0000000000008754.
[49]
Festini SB, Bernard JA, Kwak Y, et al. Altered cerebellar connectivity in Parkinson's patients ON and OFF L-DOPA medication[J]. Front Hum Neurosci, 2015, 9: 214. DOI: 10.3389/fnhum.2015.00214.
[50]
Baggio H C, Abos A, Segura B, et al. Cerebellar resting-state functional connectivity in Parkinson's disease and multiple system atrophy: Characterization of abnormalities and potential for differential diagnosis at the single-patient level[J]. Neuroimage Clin, 2019, 22: 101720. DOI: 10.1016/j.nicl.2019.101720.
[51]
Sako W, Abe T, Matsumoto Y, et al. The Cerebellum Is a Common Key for Visuospatial Execution and Attention in Parkinson's Disease[J]. Diagnostics (Basel), 2021, 11(6): 1042. DOI: 10.3390/diagnostics11061042.
[52]
Chen HM, Wang ZJ, Fang JP, et al. Different patterns of spontaneous brain activity between tremor-dominant and postural instability/gait difficulty subtypes of Parkinson's disease: a resting-state fMRI study[J]. CNS Neurosci Ther, 2015, 21(10): 855-866. DOI: 10.1111/cns.12464.
[53]
Liu J, Shuai G, Fang W, et al. Altered regional homogeneity and connectivity in cerebellum and visual-motor relevant cortex in Parkinson's disease with rapid eye movement sleep behavior disorder[J]. Sleep Med, 2021, 82: 125-133. DOI: 10.1016/j.sleep.2021.03.041.

PREV Primary mucinous cystadenoma of the testis in a child: One case report
NEXT Progresses on the study of structural and functional MRI changes of cerebellum in patients with temporal lobe epilepsy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn