Share this content in WeChat
Experience Exchang
The value of IDEAL-IQ in differential diagnosis of AFP-negative hepatocellular carcinoma and focal nodular hyperplasia
LI Shaopeng  DENG Kexue 

Cite this article as: Li SP, Deng KX. The value of IDEAL-IQ in differential diagnosis of AFP-negative hepatocellular carcinoma and focal nodular hyperplasia[J]. Chin J Magn Reson Imaging, 2022, 13(4): 115-119. DOI:10.12015/issn.1674-8034.2022.04.022.

[Abstract] Objective To evaluate the value of iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification (IDEAL-IQ) sequence in the diagnosis and differential diagnosis of alpha fetoprotein (AFP) negative hepatocellular carcinoma (HCC) and focal nodular hyperplasia (FNH).Materials and Methods Retrospective analysis was performed on 28 cases of AFP negative HCC and 15 cases of FNH. All patients received routine liver MR scans and IDEA-IQ sequence scan preoperatively. The R2* and fat fraction (FF) values of the lesion and background liver tissue were respectively measured in the two groups and analyzed statistically. Receiver operating characteristic (ROC) curve was used to analyze and compare the diagnostic efficiency of relevant parameters in the two groups.Results The values of FFlesion and R2*liver/R2*lesion in HCC and FNH group were (8.28%±5.76% , 2.98±1.08) vs. (2.56%±1.25%, 1.90±0.50), respectively, with statistical significance (P<0.05). R2*lesion and FFliver in the two groups were [(21.15±5.80) Hz, 4.02%±2.54%] vs. [(22.79±6.07) Hz, 4.23%±3.32%], respectively, with no statistical significance (P>0.05). The area under the curve (AUC) of FFlesion and R2*liver/R2*lesion were 0.923 (P<0.001) and 0.883 (P<0.001), respectively.Conclusions The FFlesion value and R2*liver/R2*lesion have differential diagnostic value for both of them and the AUC of FFlesion is larger than that of R2*liver/R2*lesion.
[Keywords] magnetic resonance imaging;IDEAL-IQ;hepatocellular carcinoma;alpha fetoprotein;focal nodular hyperplasia;steatosis;iron deficiency

LI Shaopeng   DENG Kexue*  

Department of Radiology, the First Affiliated Hospital of USTC, Southern District of Anhui Provincial Hospital, Hefei 230032, China

Deng KX, E-mail: dengkexue-anhui@

Conflicts of interest   None.

Received  2021-08-25
Accepted  2022-03-21
DOI: 10.12015/issn.1674-8034.2022.04.022
Cite this article as: Li SP, Deng KX. The value of IDEAL-IQ in differential diagnosis of AFP-negative hepatocellular carcinoma and focal nodular hyperplasia[J]. Chin J Magn Reson Imaging, 2022, 13(4): 115-119. DOI:10.12015/issn.1674-8034.2022.04.022.

Li XQ, Pan ZA, Wang X, et al. Predictive effect of Gd-EOB-DTPA enhanced MRI for HBV-related diameter ≤1 cm sHCC intrahepatic metastasis[J]. Chin J Magn Reson Imaging, 2021, 12(6): 97-101. DOI: 10.12015/issn.1674-8034.2021.06.019.
Du WZ, Pu RJ, Liang J, et al. The value of texture analysis of dynamic contrast-enhanced MRI in differentiating AFP negative hepatocellular carcinoma from focal nodular hyperplasia[J]. Chin J Magn Reson Imaging, 2020, 11(9): 765-770. DOI: 10.12015/issn.1674-8034.2020.09.009.
Bai XY, Sun Y, Hou J, et al. Clinical value of Gd-EOB-DTPA-enhanced MRI for diagnosis of focal hepatic lesions[J]. Chin J Magn Reson Imaging, 2018, 9(2): 102-107. DOI: 10.12015/issn.1674-8034.2018.02.005.
Podgórska J, Pasicz K, Skrzyński W, et al. Perfusion-diffusion ratio: a new IVIM approach in differentiating solid benign and malignant primary lesions of the liver[J]. Biomed Res Int, 2022, 2022: 2957759. DOI: 10.1155/2022/2957759.
Stollmayer R, Budai BK, Tóth A, et al. Diagnosis of focal liver lesions with deep learning-based multi-channel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging[J]. World J Gastroenterol, 2021, 27(35): 5978-5988. DOI: 10.3748/wjg.v27.i35.5978.
Wu YY, Chen YL, Fang X, et al. Characteristic findings of the liver iron overload on MRI and the feasibility of quantitative evaluation by IDEALGIQ[J]. J Pract Radiol, 2019, 35(6): 922-926. DOI: 10.3969/j.issn.1002G1671.2019.06.017.
Lei LX, Huang XH, Liu N, et al. MRIDEAL-IQ for spleenirondeposition, fat and water contentinacutepancreatitis[J]. J Pract Radiol, 2019, 35(7): 1081-1085. DOI: 10.3969/j.issn.1002-1671.2019.07.013.
Ognard J, Demany N, Mesrar J, et al. Mapping the medullar adiposity of lumbar spine in MRI: a feasibility study[J]. Heliyon, 2021, 7(1): e05992. DOI: 10.1016/j.heliyon.2021.e05992.
Yang CW, Jiang HY, Song B, et al. The diagnostic performance of version 2018 LI-RADS for hepatocellular carcinoma on Gd-EOB-DTPA enhanced MRI[J]. Chin J Radiol, 2019, 53(12): 1060-1064. DOI: 10.3760/cma.j.issn.1005?1201.2019.12.007.
Luo M, Zhang L, Jiang XH, et al. Intravoxel incoherent motion: application in differentiation of hepatocellular carcinoma and focal nodular hyperplasia[J]. Diagn Interv Radiol, 2017, 23(4): 263-271. DOI: 10.5152/dir.2017.16595.
Roncalli M, Sciarra A, Tommaso LD. Benign hepatocellular nodules of healthy liver: focal nodular hyperplasia and hepatocellular adenoma[J]. Clin Mol Hepatol, 2016, 22(2): 199-211. DOI: 10.3350/cmh.2016.0101.
Peng Y, Ye J, Liu C, et al. Simultaneous hepatic iron and fat quantification with dual-energy CT in a rabbit model of coexisting iron and fat[J]. Quant Imaging Med Surg, 2021, 11(5): 2001-2012. DOI: 10.21037/qims-20-902.
Lăpădat AM, Florescu LM, Manea NC, et al. MR spectroscopy of the liver - a reliable non-invasive alternative for evaluating non-alcoholic fatty liver disease[J]. Revue Roumaine De Morphol Embryol, 2020, 61(1): 73-80. DOI: 10.47162/RJME.61.1.08.
Kovac JD, Milovanovic T, Dugalic V, et al. Pearls and pitfalls in magnetic resonance imaging of hepatocellular carcinoma[J]. World J Gastroenterol, 2020, 26(17): 2012-2029. DOI: 10.3748/wjg.v26.i17.2012.
Hou ZB, Zhao F, Zhang B, et al. Study on clinical application of susceptibility weighted imaging ombined with diffusion weighted imaging in patients with Liver Cirrhosis complicated with small Hepatocellular Carcinoma[J]. Pak J Med Sci, 2021, 37(3): 800-804. DOI: 10.12669/pjms.37.3.3822.
Wang Q, Ye F, Ma PQ, et al. Quantitative magnetic resonance imaging evaluation of hepatic fat content with iron deposition: will it be disturbed?[J]. J Int Med Res, 2019, 47(5): 1958-1974. DOI: 10.1177/0300060519836033.
Herman P, Fonseca GM, Kruger JAP, et al. Laparoscopic liver resection for benign tumors: the current position[J]. Braz Arch Dig Surg, 2022, 34(4): e1641. DOI: 10.1590/0102-672020210002e1641.
Tan YY, Zhang X, Zhang JZ, et al. Diagnostic value of MRI and serum GPC3 levels in patients with nodular regenerative hyperplasia[J]. J Pract Hepatol, 2022, 25(1): 88-91. DOI: 10.3969/j.issn.1672-5069.2022.01.022.
Wang T, Chen MJ, Huang W, et al. The imaging manifestations of focal nodular hyperplasia of liver without central scar[J]. J Pract Radiol, 2019, 35(3): 396-399. DOI: 10.3969/j.issn.1002-1671.2019.03.014.
Fan XL, Ling Q, Fang Z, et al. Clinical value of MRI in the diagnosis of small hepatocellular carcinoma with disodium gadolinium sephate in the context of liver cirrhosis[J]. Imaging Sci Photochem, 2020, 38(6): 1038-1042. DOI: 10.7517/issn.1674-0475.200410.
Sheng J, Xiao YP. CT and MRI atypical imaging manifestations and causes of hepatocellular carcinoma[J]. J Pract Radiol, 2021, 37(2): 239-242. DOI: 10.3969/j.issn.1002-1671.2021.02.016.
Mehta KJ, Farnaud SJ, Sharp PA. Iron and liver fibrosis: Mechanistic and clinical aspects[J]. World J Gastroenterol, 2019, 25(5): 521-538. DOI: 10.3748/wjg.v25.i5.521.
Mehta KJ, Sharp PA. Iron elevates mesenchymal and metastatic biomarkers in HepG2 cells[J]. Sci Rep, 2020, 10(1): 21926. DOI: 10.1038/s41598-020-78348-5.
Li RK, Palmer SL, Zeng MS, et al. Detection of endogenous iron reduction during hepatocarcinogenesis at susceptibility-weighted MR imaging: value for characterization of hepatocellular carcinoma and dysplastic nodule in cirrhotic liver[J]. PLoS One, 2015, 10(11): e0142882. DOI: 10.1371/journal.pone.0142882.
Lü R, Yu CL. Interpretation of the magnetic resonance imaging ancillary features in Liver Imaging Reporting and Data System(LI-RADS)[J]. Int J Med Radiol, 2019, 42(5): 584-592. DOI: 10.19300/j.2019.B6944.
Golfeyz S, Lewis S, Weisberg IS. Hemochromatosis: pathophysiology, evaluation, and management of hepatic iron overload with a focus on MRI[J]. Expert Rev Gastroenterol Hepatol, 2018, 12(8): 767-778. DOI: 10.1080/17474124.2018.1496016.
Li XH, Liang Q, Chen TW, et al. Diagnostic value of imaging examinations in patients with primary hepatocellular carcinoma[J]. World J Clin Cases, 2018, 6(9): 242-248. DOI: 10.12998/wjcc.v6.i9.242.
Matondang SBRE, Karismaputri KS, Suharlim E, et al. Hepatocellular carcinoma with macroscopic fat metamorphosis: a case series[J]. J Clin Imaging Sci, 2021, 11: 36. DOI: 10.25259/JCIS_221_2020.
Park JH, Chung YE, Seo N, et al. Should threshold growth be considered a major feature in the diagnosis of hepatocellular carcinoma using LI-RADS?[J]. Korean J Radiol, 2021, 22(10): 1628. DOI: 10.3348/kjr.2020.1341.
Zech CJ, Ba-Ssalamah A, Berg T, et al. Consensus report from the 8th international forum for liver magnetic resonance imaging[J]. Eur Radiol, 2020, 30(1): 370-382. DOI: 10.1007/s00330-019-06369-4.
Grazzini G, Cozzi D, Flammia F, et al. Hepatic tumors: pitfall in diagnostic imaging[J]. Acta Biomed, 2020, 91(8-S): 9-17. DOI: 10.23750/abm.v91i8-S.9969.

PREV Diffusion kurtosis imaging study on changes of brain microstructure and cognitive function in breast cancer survivors with chemotherapy
NEXT Comparison of scores between PI-RADS v2.1 and PI-RADS v2 based on prostate slice-by-slice pathology

Tel & Fax: +8610-67113815    E-mail: