Share this content in WeChat
Experience Exchang
Clinical application of cardiac magnetic resonance feature tracking technique in rheumatic mitral stenosis and concurrent atrial fibrillation
HOU Jie  SUN Yu  ZHANG Libo  YOU Hongrui  ZHANG Rongrong  SHI Jinglong  YANG Benqiang 

Cite this article as: Hou J, Sun Y, Zhang LB, et al. Clinical application of cardiac magnetic resonance feature tracking technique in rheumatic mitral stenosis and concurrent atrial fibrillation[J]. Chin J Magn Reson Imaging, 2022, 13(4): 107-110. DOI:10.12015/issn.1674-8034.2022.04.020.

[Abstract] Objective To evaluate the clinical application of cardiovascular magnetic resonance imaging feature tracking (CMR-FT) in patients with rheumatic mitral stenosis and concurrent atrial fibrillation (RMS-AF).Materials and Methods We retrospectively studied 26 patients with RMS-AF who were treated in our hospital from January 2020 to July 2021. Their clinical and cardiac MRI data before surgery were analyzed, while 10 normal CMR subjects in the same period were collected as the healthy control group. CMR-FT was used to analyze the left atrium (LA) strain (εs/εe/εa) and strain rate (SRs/SRe/SRa). εs/SRs, εe/SRe and εa/SRa represented LA storage function, pipeline function and booster pump function respectively.Results Compared with control group, RMS-AF group had higher heart rate [(77±7) vs. (96±26), t=3.492, P=0.001]; In RMS-AF group, left ventricular function decreased [(59.9±6.7)% vs. (42.0±9.1)%, t=-5.599, P<0.001], LA diameter increased [(30.8±3.0) vs. (55.9±13.0), t=5.989, P<0.001], left atrial total ejection fraction decreased [(58.3±2.1)% vs. (12.1±3.5)%, t=-39.401, P<0.001], and LA global functional strain parameters εs/εe/εa/SRs/SRe/SRa were significantly decreased than those in the control group (all P<0.001). The inter and intraclass correlation coefficients (ICC) of RMS-AF group and the control group showed good consistency (ICC≥0.88, 95% CI: 0.78-0.93).Conclusions CMR-FT can evaluate the LA strain parameters and judge LA function (reservoir, pipeline, and booster pump function) without contrast agent. It can be used as a helpful imaging biomarker of clinical diagnosis and treatment in RMS-AF.
[Keywords] atrial fibrillation;cardiovascular magnetic resonance;feature tracking;left atrial function;strain

HOU Jie1, 2   SUN Yu1, 2   ZHANG Libo1, 2   YOU Hongrui1, 2   ZHANG Rongrong1, 2   SHI Jinglong1, 2   YANG Benqiang1, 2*  

1 Department of Radiology, General Hospital of the Northern Theater Command, Shenyang 110016, China

2 Key Laboratory of Cardiovascular Imaging and Research, Shenyang 110016, China

Yang BQ, E-mail:

Conflicts of interest   None.

Received  2021-12-15
Accepted  2022-03-23
DOI: 10.12015/issn.1674-8034.2022.04.020
Cite this article as: Hou J, Sun Y, Zhang LB, et al. Clinical application of cardiac magnetic resonance feature tracking technique in rheumatic mitral stenosis and concurrent atrial fibrillation[J]. Chin J Magn Reson Imaging, 2022, 13(4): 107-110.DOI:10.12015/issn.1674-8034.2022.04.020

Truong VT, Palmer C, Wolking S, et al. Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers[J]. Eur Heart J Cardiovasc Imaging, 2020, (4): 446-453. DOI: 10.1093/ehjci/jez157.
Wojakowski W, Baumgartner H. The Year in Cardiology 2018: Valvular Heart Disease[J]. Eur Heart J, 2019, 40(5): 414-421. DOI: 10.1093/eurheartj/ehy893.
Margulescu AD, Mont L. Persistent atrial fibrillation vs paroxysmal atrial fibrillation: differences in management[J]. Expert Rev Cardiovasc Ther, 2017, 15(8): 601-618. DOI: 10.1080/14779072.2017.1355237.
January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons[J]. Circulation, 2019, 140(2): e125-e151. DOI: 10.1161/CIR.0000000000000665.
Owens RE, Kabra R, Oliphant CS. Direct oral anticoagulant use in nonvalvular atrial fibrillation with valvular heart disease: a systematic review[J]. Clin Cardiol, 2017, 40(6): 407-412. DOI: 10.1002/clc.22659.
Wang H, Han J, Wang Z, et al. A prospective randomized trial of the cut-and-sew Maze procedure in patients undergoing surgery for rheumatic mitral valve disease[J]. J Thorac Cardiovasc Surg, 2018, 155(2): 608-617. DOI: 10.1016/j.jtcvs.2017.07.084.
Pathan F, Zainal Abidin HA, Vo QH, et al. Left atrial strain: a multi-modality, multi-vendor comparison study[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(1): 102-110. DOI: 10.1093/ehjci/jez303.
Kupczyńska K, Mandoli GE, Cameli M, et al. Left atrial strain-a current clinical perspective. Kardiol Pol, 2021, 79(9): 955-964. DOI: 10.33963/KP.a2021.0105.
Alfuhied A, Marrow BA, Elfawal S, et al. Reproducibility of left atrial function using cardiac magnetic resonance imaging[J]. Eur Radiol, 2021, 31(5): 2788-2797. DOI: 10.1007/s00330-020-07399-z.
Hu L, Ouyang R, Liu X, et al. Impairment of left atrial function in pediatric patients with repaired tetralogy of Fallot: a cardiovascular magnetic resonance imaging study[J]. Int J Cardiovasc Imaging, 2021, 37(11): 3255-3267. DOI: 10.1007/s10554-021-02302-3.
Schuster A, Backhaus SJ, Stiermaier T, et al. Left Atrial Function with MRI Enables Prediction of Cardiovascular Events after Myocardial Infarction: Insights from the AIDA STEMI and TATORT NSTEMI Trials[J]. Radiology, 2019, 293(2): 292-302. DOI: 10.1148/radiol.2019190559.
Song Y, Li L, Chen X, et al. Early Left Ventricular Diastolic Dysfunction and Abnormal Left Ventricular-left Atrial Coupling in Asymptomatic Patients With Hypertension: A Cardiovascular Magnetic Resonance Feature Tracking Study[J]. J Thorac Imaging, 2022, 37(1): 26-33. DOI: 10.1097/RTI.0000000000000573.
Tan Z, Yang Y, Wu X, et al. Left atrial remodeling and the prognostic value of feature tracking derived left atrial strain in patients with light-chain amyloidosis: a cardiovascular magnetic resonance study[J]. Int J Cardiovasc Imaging, 2022. DOI: 10.1007/s10554-022-02534-x.
Li L, Chen X, Yin G, et al. Early detection of left atrial dysfunction assessed by CMR feature tracking in hypertensive patients[J]. Eur Radiol, 2020, 30(2): 702-711. DOI: 10.1007/s00330-019-06397-0.
Chinese Association of Research Hospitals, Atrial Fibrillation Expert Committee of Chinese Medical Doctor Association. The Chinese expert consensus on surgical treatment of atrial fibrillation 2020 edition[J]. Chinese Journal of Thoracic and Cardiovascular Surgery, 2021, 37(3): 129-144. DOI: 10.3760/cma.j.cn112434-20201129-00520.
Onishi T, Saha SK, Ludwig DR, et al. Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking[J]. J Cardiovasc Magn Reson, 2013, 15(1): 95. DOI: 10.1186/1532-429X-15-95.
Huber AT, Lamy J, Rahhal A, et al. Cardiac MR Strain: A Noninvasive Biomarker of Fibrofatty Remodeling of the Left Atrial Myocardium[J]. Radiology, 2018, 286(1): 83-92. DOI: 10.1148/radiol.2017162787.
Yang Y, Yin G, Jiang Y, et al. Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study[J]. J Cardiovasc Magn Reson, 2020, 22(1): 1. DOI: 10.1186/s12968-019-0589-5.
Kowallick JT, Morton G, Lamata P, et al. Quantification of atrial dynamics using cardiovascular magnetic resonance: inter-study reproducibility[J]. J Cardiovasc Magn Reson, 2015, 17(1): 36. DOI: 10.1186/s12968-015-0140-2.
Tao S, Ciuffo LA, Lima JAC, et al. Quantifying left atrial structure and function using single-plane tissue-tracking cardiac magnetic resonance[J]. Magn Reson Imaging, 2017, 42: 130-138. DOI: 10.1016/j.mri.2017.06.003.
Margulescu AD, Rees E, Coulson RM, et al. Do left atrial strain and strain rate reflect intrinsic atrial function, or are they determined by left ventricular function?[J]. Kardiol Pol, 2015, 73(7): 539-548. DOI: 10.5603/KP.a2015.0035.
Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation[J]. Heart, 2019, 105(24): 1860-1867. DOI: 10.1136/heartjnl-2018-314267.
Padfield GJ, Steinberg C, Swampillai J, et al. Progression of paroxysmal to persistent atrial fibrillation: 10-year follow-up in the Canadian Registry of Atrial Fibrillation[J]. Heart Rhythm, 2017, 14(6): 801-807. DOI: 10.1016/j.hrthm.2017.01.038.
Habibi M, Lima JA, Khurram IM, et al. Association of left atrial function and left atrial enhancement in patients with atrial fibrillation: cardiac magnetic resonance study[J]. Circ Cardiovasc Imaging, 2015, 8(2): e002769. DOI: 10.1161/CIRCIMAGING.114.002769.
Hoit BD. Left atrial size and function: role in prognosis[J]. J Am Coll Cardiol, 2014, 63(6): 493-505. DOI: 10.1016/j.jacc.2013.10.055.
Santos AB, Roca GQ, Claggett B, et al. Prognostic Relevance of Left Atrial Dysfunction in Heart Failure With Preserved Ejection Fraction[J]. Circ Heart Fail, 2016, 9(4): e002763. DOI: 10.1161/CIRCHEARTFAILURE.115.002763.
Yamada A, Hashimoto N, Fujito H, et al. Comprehensive assessment of left atrial and ventricular remodeling in paroxysmal atrial fibrillation by the cardiovascular magnetic resonance myocardial extracellular volume fraction and feature tracking strain[J]. Sci Rep, 2021, 11(1): 10941. DOI: 10.1038/s41598-021-90117-6.
Schuster A, Stahnke VC, Unterberg-Buchwald C, et al. Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility[J]. Clin Radiol, 2015, 70(9): 989-998. DOI: 10.1016/j.crad.2015.05.006.
Leng S, Tan RS, Zhao X, et al. Validation of a rapid semi-automated method to assess left atrial longitudinal phasic strains on cine cardiovascular magnetic resonance imaging[J]. J Cardiovasc Magn Reson, 2018, 20(1): 71. DOI: 10.1186/s12968-018-0496-1.
Sarvari SI, Haugaa KH, Stokke TM, et al. Strain echocardiographic assessment of left atrial function predicts recurrence of atrial fibrillation[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(6): 660-667. DOI: 10.1093/ehjci/jev185.

PREV Application value of gray level co-occurrence matrix in differentiating vestibular schwannoma from cerebellopontine angle meningioma
NEXT Diffusion kurtosis imaging study on changes of brain microstructure and cognitive function in breast cancer survivors with chemotherapy

Tel & Fax: +8610-67113815    E-mail: