Share this content in WeChat
Experience Exchang
Application value of gray level co-occurrence matrix in differentiating vestibular schwannoma from cerebellopontine angle meningioma
JU Wenping  LIANG Jie  WANG Xianliang  PENG Xueting  WANG Jianfei 

Cite this article as: Ju WP, Liang J, Wang XL, et al. Application value of gray level co-occurrence matrix in differentiating vestibular schwannoma from cerebellopontine angle meningioma[J]. Chin J Magn Reson Imaging, 2022, 13(4): 103-106. DOI:10.12015/issn.1674-8034.2022.04.019.

[Abstract] Objective To investigate the value of gray-level co-occurrence matrix (GLCM) in the differential diagnosis of vestibular schwannoma (VS) and cerebellopontine angle meningioma (CPAM).Materials and Methods Retrospective analysis of 41 patients cases with VS and CPAM confirmed by pathology, all patients underwent conventional MRI plain scan + enhanced scan before operation. Measure and record GLCM parameters, including energy, contrast, correlation, inverse difference moment and entropy. Two independent samples t test or Mann-Whitney U test were used to compare the GLCM parameters of each sequence, and ROC curve analysis was used to judge the diagnostic power of each parameter.Results The difference in contrast, correlation, and inverse difference moment between the two groups of T2WI sequence was statistically significant (P<0.05); the difference in contrast and inverse difference moment between the two groups of FLAIR sequence was statistically significant (P<0.05); the difference in the contrast and inverse difference moment between the two groups of enhanced T1WI sequences was statistically significant (P<0.05). Among the various parameters of the sequence, the T2WI sequence has the best diagnostic efficiency by contrast, with the largest AUC value of 0.971, and the sensitivity and specificity are 91.30% and 94.44%, respectively.Conclusions Gray-level co-occurrence matrix is helpful to distinguish vestibular schwannoma from cerebellopontine angle meningioma, and can provide important clinical reference value.
[Keywords] gray-level co-occurrence matrix;vestibular schwannoma;cerebellopontine angle meningioma;texture analysis;magnetic resonance imaging

JU Wenping1   LIANG Jie1   WANG Xianliang1   PENG Xueting2   WANG Jianfei1*  

1 Department of Radiology, Weifang People's Hospital, Weifang 261041, China

2 School of Medical Imaging, Weifang Medical University, Weifang 261053, China

Wang JF, E-mail:

Conflicts of interest   None.

Received  2021-10-29
Accepted  2022-03-16
DOI: 10.12015/issn.1674-8034.2022.04.019
Cite this article as: Ju WP, Liang J, Wang XL, et al. Application value of gray level co-occurrence matrix in differentiating vestibular schwannoma from cerebellopontine angle meningioma[J]. Chin J Magn Reson Imaging, 2022, 13(4): 103-106.DOI:10.12015/issn.1674-8034.2022.04.019

Landeiro J, Junior J, Silveira R. Surgical Treatment of the Tumors of the Cerebellopontine Angle[M]. Principles of Neuro-Oncology, 2021: 887-908. DOI: 10.1007/978-3-030-54879-7_44.
Goldbrunner R, Weller M, Regis J, et al. EANO guideline on the diagnosis and treatment of vestibular schwannoma[J]. Neuro Oncol, 2020, 22(1): 31-45. DOI: 10.1093/neuonc/noz153.
Adib SD, Tatagiba M. Surgical management of collision-tumors between vestibular schwannoma and meningioma in the cerebellopontine angle in patients with neurofibromatosis type 2[J]. Acta Neurochirurgica, 2019, 161(6): 1157-1163. DOI: 10.1007/s00701-019-03933-1.
Lv F, Zhao Z, Zhong YX, et al. Research Progress of Facial Nerve Function Protection in Vestibular Schwannoma Surgery[J]. Acta Med Univ Sci Technol Huazhong, 2021, 50(1): 129-134. DOI: 10.3870/j.issn.1672-0741.2021.01.025.
Zhao ZB, Zhu YP, Fu YF, et al. Clinical Characteristics of Acoustic Neuroma Presenting as Sudden Sensorineural Hearing Loss[J]. Chin J Otology, 2021, 19(4): 696-700. DOI: 10.3969/j.issn.1672-2922.2021.04.031.
Gupta VK, Thakker A, Gupta KK. Vestibular Schwannoma: What We Know and Where We are Heading[J]. Head and Neck Pathology, 2020, 14(4): 1058-1066. DOI: 10.1007/s12105-020-01155-x.
Nager GT, Masica DN. Meningiomas of the cerebello-pontine angle and their relation to the temporal bone[J]. Laryngoscope, 1970, 80(6): 863-895. DOI: 10.1288/00005537-197006000-00003.
Amato MC, Colli BO, Carlotti JC, et al. Meningioma of the internal auditory canal: case report[J]. Arq Neuropsiquiatr, 2003, 61(3A): 659-662. DOI: 10.1590/s0004-282x2003000400025.
Smirniotopoulos JG, Jager HR. Differential Diagnosis of Intracranial Masses[M]. Cham (CH): Springer, 2020: 93-104. DOI: 10.1007/978-3-030-38490-6_8.
Saigal G, Pisani L, Allakhverdieva E, et al. Utility of Microhemorrhage as a Diagnostic Tool in Distinguishing Vestibular Schwannomas from other Cerebellopontine Angle (CPA) Tumors[J]. Indian J Otolaryngol Head Neck Surg, 2021, 73(3): 321-326. DOI: 10.1007/s12070-021-02372-8.
Jeong H, Lee DH, Shin JE, et al. Direction-changing spontaneous nystagmus in cerebellopontine angle tumour[J]. J Clin Neurosci, 2022, 95: 118-122. DOI: 10.1016/j.jocn.2021.12.002.
Chen LH, Zhang HT, Sun K, et al. Advanc es in clinical and imaging features of meningiomas in the internal auditory canal[J]. Chin J Brain Dis Rehabil (Electronic Edition), 2019, 9(4): 234-238. DOI: 10.3877/cma.j.issn.2095-123X.2019.04.011.
Mohamad J, Simgen A. Akustikusneurinome[J]. Der Radiologe, 2020, 60(11): 1018-1025. DOI: 10.1007/s00117-020-00751-w.
Voss NF, Vrionis FD, Heilman CB, et al. Meningiomas of the cerebellopontine angle[J]. Surg Neurol, 2000, 53(5): 439-446, 446-447. DOI: 10.1016/s0090-3019(00)00195-6.
Zheng JX, Xu Y, Fan WG, et al. Differential diagnosis of texture analysis in vestibular schwannoma and cerebellopontine angle meningioma[J]. Journal of Regional Anatomy and Operative Surgery, 2019, 28(5): 379-382. DOI: 10.11659/jjssx.12E018115.
Dincic M, Todorovic J, Nesovic OJ, et al. The Fractal and GLCM Textural Parameters of Chromatin May Be Potential Biomarkers of Papillary Thyroid Carcinoma in Hashimoto's Thyroiditis Specimens[J]. Microsc Microanal, 2020, 26(4): 717-730. DOI: 10.1017/S1431927620001683.
Mousavi SM, Asgharzadeh-Bonab A, Ranjbarzadeh R. Time-Frequency Analysis of EEG Signals and GLCM Features for Depth of Anesthesia Monitoring[J]. Comput Intell Neurosci, 2021, 2021: 8430565. DOI: 10.1155/2021/8430565.
Bakheet S, Al-Hamadi A. Automatic detection of COVID-19 using pruned GLCM-Based texture features and LDCRF classification[J]. Comput Biol Med, 2021, 137: 104781. DOI: 10.1016/j.compbiomed.2021.104781.
Liu XY, Pu RJ, Liang J, et al. The value of T2 mapping texture features of 3.0 T MRI in grading cartilage injury of knee osteoarthritis[J]. Chin J Magn Reson Imaging, 2021, 12(7): 34-38. DOI: 10.12015/issn.1674-8034.2021.07.007.
Varuna SN, Kumar T. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network[J]. Brain Inform, 2018, 5(1): 23-30. DOI: 10.1007/s40708-017-0075-5.

PREV Comparative study of 3D-FLAIR sequence based on compressed sensing and the conventional 2D-FLAIR sequence in white matter lesion imaging
NEXT Clinical application of cardiac magnetic resonance feature tracking technique in rheumatic mitral stenosis and concurrent atrial fibrillation

Tel & Fax: +8610-67113815    E-mail: