Share:
Share this content in WeChat
X
Original Article
Functional connectivity and regional homogeneity of resting state functional magnetic resonance imaging in patients with Ménière Disease
YUAN Xiaojia  LI Xiaozhen  XU Yu  YANG Yan  LIU Lei  WANG Weitao  ZHAO Simin  DU fengyi  ZHONG Liqun  CHEN Zhengguang  ZHAO Tianzuo 

Cite this article as: Yuan XJ, Li XZ, Xu Y, et al. Functional connectivity and regional homogeneity of resting state functional magnetic resonance imaging in patients with Ménière Disease[J]. Chin J Magn Reson Imaging, 2022, 13(4): 75-78. DOI:10.12015/issn.1674-8034.2022.04.013.


[Abstract] Objective To investigate the alterations of functional connectivity (FC) and regional homogeneity (ReHo) by the resting-state functional magnetic resonance imaging (rs-fMRI) in patients with Ménière disease (MD).Materials and Methods A total of 12 patients with active MD and 12 healthy control subjects were enrolled to rs-fMRI scan. Seed-based functional connectivity analysis of bilateral thalamus was performed using the REST-plus software. The data were analyzed to evaluate the differences in ReHo values between the two groups by the Kendall's coefficient concordance regional homogeneity (KCC-ReHo) and coherence regional homogeneity (Cohe-ReHo).Results Compared with the healthy control group, the increased connectivity of right thalamus and right inferior frontal gyrus was showed in MD patients. KCC-ReHo in MD patients were higher in the left inferior temporal gyrus, lower in the right superior frontal gyrus; Cohe-ReHo in MD patients was higher in the right cerebellum and the left inferior temporal gyrus, lower in the right parietal superior gyrus, right superior frontal gyrus, and left precuneus (corrected by Alphasim, P<0.05 after correction).Conclusions This study identified specific alterations of FC and ReHo values in patients with MD, which may relate to the pathogenesis of Meniere's disease.
[Keywords] Ménière disease;resting-state functional magnetic resonance imaging;regional homogeneity;functional connectivity

YUAN Xiaojia1   LI Xiaozhen1   XU Yu1   YANG Yan1   LIU Lei1   WANG Weitao1   ZHAO Simin1   DU fengyi1   ZHONG Liqun2   CHEN Zhengguang1*   ZHAO Tianzuo1  

1 Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China

2 Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China

Chen ZG, E-mail: guangchen999@sina.com

Conflicts of interest   None.

Received  2021-12-03
Accepted  2022-04-01
DOI: 10.12015/issn.1674-8034.2022.04.013
Cite this article as: Yuan XJ, Li XZ, Xu Y, et al. Functional connectivity and regional homogeneity of resting state functional magnetic resonance imaging in patients with Ménière Disease[J]. Chin J Magn Reson Imaging, 2022, 13(4): 75-78.DOI:10.12015/issn.1674-8034.2022.04.013

[1]
Basura GJ, Adams ME, Monfared A, et al. Clinical practice guideline: ménière's disease[J]. Otolaryngol Head Neck Surg, 2020, 162(2_suppl): S1-S55. DOI: 10.1177/0194599820909438.
[2]
Zhang WD, Hui L, Zhang B, et al. The correlation between endolymphatic Hydrops and clinical features of meniere disease[J]. Laryngoscope, 2021, 131(1): E144-E150. DOI: 10.1002/lary.28576.
[3]
Wu QR, Dai CF, Zhao ML, et al. The correlation between symptoms of definite Meniere's disease and endolymphatic hydrops visualized by magnetic resonance imaging[J]. Laryngoscope, 2016, 126(4): 974-979. DOI: 10.1002/lary.25576.
[4]
Gluth MB. On the relationship between menière's disease and endolymphatic Hydrops[J]. Otol Neurotol, 2020, 41(2): 242-249. DOI: 10.1097/MAO.0000000000002502.
[5]
Li XZ, Zhang X, Ha CY, et al. Altered functions of Hippocampus in patients with Meniere's disease: a study on resting state functional connectivity[J]. Chin J Otol, 2018, 16(5): 611-614. DOI: 10.3969/j.issn.1672-2922.2018.05.005.
[6]
Brandt T, Dieterich M. Thalamocortical network: a core structure for integrative multimodal vestibular functions[J]. Curr Opin Neurol, 2019, 32(1): 154-164. DOI: 10.1097/WCO.0000000000000638.
[7]
van Ombergen A, Heine L, Jillings S, et al. Altered functional brain connectivity in patients with visually induced dizziness[J]. Neuroimage Clin, 2017, 14: 538-545. DOI: 10.1016/j.nicl.2017.02.020.
[8]
Chen ZW, Xiao LJ, Liu HY, et al. Altered thalamo-cortical functional connectivity in patients with vestibular migraine: a resting-state fMRI study[J]. Neuroradiology, 2022, 64(1): 119-127. DOI: 10.1007/s00234-021-02777-w.
[9]
Dieterich M, Brandt T. The bilateral central vestibular system: its pathways, functions, and disorders[J]. Ann N Y Acad Sci, 2015, 1343: 10-26. DOI: 10.1111/nyas.12585.
[10]
Dieterich M, Kirsch V, Brandt T. Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus[J]. J Neurol, 2017, 264(Suppl 1): 55-62. DOI: 10.1007/s00415-017-8453-8.
[11]
Helmchen C, Ye Z, Sprenger A, et al. Changes in resting-state fMRI in vestibular neuritis[J]. Brain Struct Funct, 2014, 219(6): 1889-1900. DOI: 10.1007/s00429-013-0608-5.
[12]
Suda A, Osada T, Ogawa A, et al. Functional organization for response inhibition in the right inferior frontal cortex of individual human brains[J]. Cereb Cortex, 2020, 30(12): 6325-6335. DOI: 10.1093/cercor/bhaa188.
[13]
Brandt T, Dieterich M. 'Excess anxiety' and 'less anxiety': both depend on vestibular function[J]. Curr Opin Neurol, 2020, 33(1): 136-141. DOI: 10.1097/WCO.0000000000000771.
[14]
Zang YF, Jiang TZ, Lu YL, et al. Regional homogeneity approach to fMRI data analysis[J]. NeuroImage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[15]
Li ZJ, Zhou J, Lan L, et al. Concurrent brain structural and functional alterations in patients with migraine without aura: an fMRI study[J]. J Headache Pain, 2020, 21(1): 141. DOI: 10.1186/s10194-020-01203-5.
[16]
Ji LX, Meda SA, Tamminga CA, et al. Characterizing functional regional homogeneity (ReHo) as a B-SNIP psychosis biomarker using traditional and machine learning approaches[J]. Schizophr Res, 2020, 215: 430-438. DOI: 10.1016/j.schres.2019.07.015.
[17]
Wurthmann S, Naegel S, Steinberg BS, et al. Cerebral gray matter changes in persistent postural perceptual dizziness[J]. J Psychosom Res, 2017, 103: 95-101. DOI: 10.1016/j.jpsychores.2017.10.007.
[18]
Lee JO, Lee ES, Kim JS, et al. Altered brain function in persistent postural perceptual dizziness: a study on resting state functional connectivity[J]. Hum Brain Mapp, 2018, 39(8): 3340-3353. DOI: 10.1002/hbm.24080.
[19]
Lin YH, Young IM, Conner AK, et al. Anatomy and white matter connections of the inferior temporal gyrus[J]. World Neurosurg, 2020, 143: e656-e666. DOI: 10.1016/j.wneu.2020.08.058.
[20]
Zhe X, Chen L, Zhang DS, et al. Cortical areas associated with multisensory integration showing altered morphology and functional connectivity in relation to reduced life quality in vestibular migraine[J]. Front Hum Neurosci, 2021, 15: 717130. DOI: 10.3389/fnhum.2021.717130.
[21]
Calzolari E, Chepisheva M, Smith RM, et al. Vestibular agnosia in traumatic brain injury and its link to imbalance[J]. Brain, 2021, 144(1): 128-143. DOI: 10.1093/brain/awaa386.
[22]
Bednarczuk NF, Bonsu A, Ortega MC, et al. Abnormal visuo-vestibular interactions in vestibular migraine: a cross sectional study[J]. Brain, 2019, 142(3): 606-616. DOI: 10.1093/brain/awy355.
[23]
Roberts RE, Ahmad H, Patel M, et al. An fMRI study of visuo-vestibular interactions following vestibular neuritis[J]. Neuroimage Clin, 2018, 20: 1010-1017. DOI: 10.1016/j.nicl.2018.10.007.
[24]
Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates[J]. Brain, 2006, 129(Pt 3): 564-583. DOI: 10.1093/brain/awl004.
[25]
Eulenburg PZ, Caspers S, Roski C, et al. Meta-analytical definition and functional connectivity of the human vestibular cortex[J]. NeuroImage, 2012, 60(1): 162-169. DOI: 10.1016/j.neuroimage.2011.12.032.
[26]
Briggs RG, Khan AB, Chakraborty AR, et al. Anatomy and white matter connections of the superior frontal gyrus[J]. Clin Anat, 2020, 33(6): 823-832. DOI: 10.1002/ca.23523.
[27]
Li KZ, Si LH, Cui B, et al. Altered spontaneous functional activity of the right precuneus and cuneus in patients with persistent postural-perceptual dizziness[J]. Brain Imaging Behav, 2020, 14(6): 2176-2186. DOI: 10.1007/s11682-019-00168-7.
[28]
Saad ZS, Ropella KM, Cox RW, et al. Analysis and use of FMRI response delays[J]. Hum Brain Mapp, 2001, 13(2): 74-93. DOI: 10.1002/hbm.1026.
[29]
Liu DQ, Yan CG, Ren JJ, et al. Using coherence to measure regional homogeneity of resting-state FMRI signal[J]. Front Syst Neurosci, 2010, 4: 24. DOI: 10.3389/fnsys.2010.00024.
[30]
Zhu YY, Huang MH, Zhao YL, et al. Local functional connectivity of patients with acute and remitting multiple sclerosis: a Kendall's coefficient of concordance- and coherence-regional homogeneity study[J]. Medicine, 2020, 99(43): e22860. DOI: 10.1097/MD.0000000000022860.

PREV Study on diffusion kurtosis imaging of the caput nuclei caudate in children with autism spectrum disorder
NEXT Study on the change of resting state degree centrality and correlation in patients with obstructive sleep apnea
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn