Share:
Share this content in WeChat
X
Clinical Article
The study of enhanced MR radiomics combining clinical factors in predicting early recurrence of hepatocellular carcinoma after resection
YANG Haoran  ZHANG Juntao  MA Mimi  ZOU Linxuan  CAO Xinshan 

Cite this article as: Yang HR, Zhang JT, Ma MM, et al. The study of enhanced MR radiomics combining clinical factors in predicting early recurrence of hepatocellular carcinoma after resection[J]. Chin J Magn Reson Imaging, 2022, 13(4): 49-55. DOI:10.12015/issn.1674-8034.2022.04.009.


[Abstract] Objective To develop and validate a preoperative MRI radiomics model combining clinical factors in predicting early recurrence of hepatocellular carcinoma after surgical resection.Materials and Methods One hundred and sixteen patients (82 in the training set and 34 in the test set), who had been pathologically diagnosed as hepatocellular carcinoma (HCC) with preoperative abdominal dynamic contrast-enhancement magnetic resonance imaging (DCE-MRI) and relevant clinical factors, were recruited in this retrospective study. The 3D slicer software was used to delineate the ROI of lesions and extract the radiomics features. The radiomics score model was established by utilizing the maximum correlation-minimum redundancy algorithm (mRMR), minimum absolute contraction and selection operator (LASSO) feature selection procedure, Similarly, the clinical factors were introduced to build the Logistic regression model. The area under the receiver operating characteristic curve (AUC), Delong test and decision curve analysis (DCA) were performed to evaluate and compare the accuracy and difference of each radiomics model.Results In all,nine radiomics features were selected to construct the radiomics score model. The clinical factors model, including TNM stage, alpha-fetoprotein level, γ-glutamylaminotransferase, Child-Pugh grade. The radiomics nomogram of integrated the radiomics score and clinical factors demonstrated better discriminative performance (AUC=0.79, 95% CI: 0.63-0.96) than the Clinical factors models (AUC=0.71, 95% CI: 0.52-0.90),Delong test Z=2.363,P=0.018. The decision curve analysis presented the improved clinical net benefit.Conclusion The combined model based on preoperative MR radiomics and clinical factors can be served as effective imaging biomarker to predict early recurrence of hepatocellular carcinoma after surgical resection.
[Keywords] radiomics;magnetic resonance imaging;hepatocellular carcinoma;prognosis prediction

YANG Haoran1   ZHANG Juntao2   MA Mimi1   ZOU Linxuan1   CAO Xinshan1*  

1 Department of Radiology, Affiliated Hospital of Binzhou Medical College, Binzhou 256603, China

2 GE Healthcare Precision Health Institution, Shanghai 210000, China

Cao XS, E-mail: byfycxs@126.com

Conflicts of interest   None.

Received  2021-12-21
Accepted  2022-03-25
DOI: 10.12015/issn.1674-8034.2022.04.009
Cite this article as: Yang HR, Zhang JT, Ma MM, et al. The study of enhanced MR radiomics combining clinical factors in predicting early recurrence of hepatocellular carcinoma after resection[J]. Chin J Magn Reson Imaging, 2022, 13(4): 49-55.DOI:10.12015/issn.1674-8034.2022.04.009

[1]
Qiu GT, Jin ZX, Chen X, et al. Interpretation of guidelines for the diagnosis and treatment of primary liver cancer (2019 edition) in China[J]. Glob Health Med, 2020, 2(5): 306-311. DOI: 10.35772/ghm.2020.01051.
[2]
Lee JI, Lee JW, Kim YS, et al. Analysis of survival in very early hepatocellular carcinoma after resection[J]. J Clin Gastroenterol, 2011, 45(4): 366-371. DOI: 10.1097/mcg.0b013e3181f3a2f4.
[3]
Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15(10): 599-616. DOI: 10.1038/s41571-018-0073-4.
[4]
Gao Q, Wang XY, Zhou J, et al. Multiple carcinogenesis contributes to the heterogeneity of HCC[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(1): 13. DOI: 10.1038/nrgastro.2014.6-c1.
[5]
Kobayashi T, Aikata H, Kobayashi T, et al. Patients with early recurrence of hepatocellular carcinoma have poor prognosis[J]. Hepatobiliary Pancreat Dis Int, 2017, 16(3): 279-288. DOI: 10.1016/s1499-3872(16)60181-9.
[6]
Hirokawa F, Hayashi M, Asakuma M, et al. Risk factors and patterns of early recurrence after curative hepatectomy for hepatocellular carcinoma[J]. Surg Oncol, 2016, 25(1): 24-29. DOI: 10.1016/j.suronc.2015.12.002.
[7]
Wang LY, Ma XH, Zhao XM. Predicting early postoperative recurrence of hepatocellular carcinoma in magnetic resonance imaging[J]. Radiol Pract, 2021, 36(6): 803-806. DOI: 10.13609/j.cnki.1000-0313.2021.06.021.
[8]
Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study[J]. EBioMedicine, 2019, 50: 156-165. DOI: 10.1016/j.ebiom.2019.10.057.
[9]
Akai H, Yasaka K, Kunimatsu A, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest[J]. Diagn Interv Imaging, 2018, 99(10): 643-651. DOI: 10.1016/j.diii.2018.05.008.
[10]
Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network[J]. Magn Reson Imaging, 2012, 30(9): 1323-1341. DOI: 10.1016/j.mri.2012.05.001.
[11]
Chernyak V, Fowler KJ, Kamaya A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients[J]. Radiology, 2018, 289(3): 816-830. DOI: 10.1148/radiol.2018181494.
[12]
van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107. DOI: 10.1158/0008-5472.CAN-17-0339.
[13]
Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update[J]. Hepatol Int, 2017, 11(4): 317-370. DOI: 10.1007/s12072-017-9799-9.
[14]
Mao B, Zhang LZ, Ning PG, et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics[J]. Eur Radiol, 2020, 30(12): 6924-6932. DOI: 10.1007/s00330-020-07056-5.
[15]
Hennedige T, Venkatesh SK. Advances in computed tomography and magnetic resonance imaging of hepatocellular carcinoma[J]. World J Gastroenterol, 2016, 22(1): 205-220. DOI: 10.3748/wjg.v22.i1.205.
[16]
Zhang DW, Xu AX. Application of dual-source CT perfusion imaging and MRI for the diagnosis of primary liver cancer[J]. Oncol Lett, 2017, 14(5): 5753-5758. DOI: 10.3892/ol.2017.6170.
[17]
Yue Q, Zhu TE, Mo ZY, et al. Analysis of factors for early recurrence of patients with hepatocellular carcinoma after resection[J]. Chin J Gen Surg, 2019, 28(1): 18-23. DOI: 10.7659/j.issn.1005-6947.2019.01.003.
[18]
Ji GW, Wang K, Xia YX, et al. Application value of machine learning algorithms for predicting recurrence after resection of early-stage hepatocellular carcinoma[J]. Chin J Surg, 2021, 59(8): 679-685. DOI: 10.3760/cma.j.cn112139-20201026-00768.
[19]
Shimoda M, Tago K, Shiraki T, et al. Risk factors for early recurrence of single lesion hepatocellular carcinoma after curative resection[J]. World J Surg, 2016, 40(10): 2466-2471. DOI: 10.1007/s00268-016-3529-7.
[20]
Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314. DOI: 10.1016/s0140-6736(18)30010-2.
[21]
Kierans AS, Leonardou P, Hayashi P, et al. MRI findings of rapidly progressive hepatocellular carcinoma[J]. Magn Reson Imaging, 2010, 28(6): 790-796. DOI: 10.1016/j.mri.2010.03.005.
[22]
Shan QY, Hu HT, Feng ST, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation[J]. Cancer Imaging, 2019, 19(1): 11. DOI: 10.1186/s40644-019-0197-5.
[23]
Clarke SE, Saranathan M, Rettmann DW, et al. High resolution multi-arterial phase MRI improves lesion contrast in chronic liver disease[J]. Clin Invest Med, 2015, 38(3): E90-E99. DOI: 10.25011/cim.v38i3.22704.
[24]
Zhang Z, Jiang HY, Chen J, et al. Hepatocellular carcinoma: radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction[J]. Cancer Imaging, 2019, 19(1): 22. DOI: 10.1186/s40644-019-0209-5.

PREV Study on the diagnostic efficacy of combined MRI sequences contrast MDCT in T staging of esophageal squamous cell carcinoma
NEXT Identification of Alzheimer,s disease and mild cognitive impairment patients using individual-specific functional connectivity
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn