Share:
Share this content in WeChat
X
Clinical Article
The diagnostic value of 18F-FDG PET/MR for cerebral tumefactive demyelinating lesions
WANG Kai  ZHANG Shu  QIAO Zhen  WU Tong  FAN Di  CHEN Qian  AI Lin 

Cite this article as: Wang K, Zhang S, Qiao Z, et al. The diagnostic value of 18F-FDG PET/MR for cerebral tumefactive demyelinating lesions[J]. Chin J Magn Reson Imaging, 2022, 13(4): 20-25. DOI:10.12015/issn.1674-8034.2022.04.004.


[Abstract] Objective To investigate the diagnostic value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/MR multimodal imaging in tumefactive demyelinating diseases (TDL).Materials and Methods A total of 39 patients with suspected TDL from November 2019 to November 2021 were collected retrospectively, including their clinical information and multimodal PET/MR images. The imaging parameters of all 39 patients were measured by drawing the region of interest on the imaging workstation, including standard uptake value (SUV), lesion metabolic volume, total glycolysis, cerebral blood flow, cerebral blood volume, and ADC. The diagnostic efficacy of each image index was calculated by receiver operating characteristic (ROC) curve; moreover, the image indexes significantly associated with diagnostic performance were screened by univariant and multivariant logistic analysis, and then, these indexes were combined to generate the integrated diagnostic efficacy.Results SUVmax and SUVmean in TDL group were significantly higher than those in non-TDL group (13.65±2.31 vs. 10.03±1.96, P=0.028; 8.30±0.58 vs. 6.25±1.53, P=0.023). ACDmean in TDL group was higher than that in non-TDL group (1.10±0.13 vs. 0.86±0.51), and the difference was statistically significant (P=0.013). ROC analysis showed that the area under curve (AUC) of SUVmax, SUVmean and ADCmean were [0.920, 95% confidence interval (CI): 0.738-1.102; 0.940, 95% CI: 0.791-1.089;0.960, 95% CI: 0.843-1.077, respectively, P<0.001]. The AUC of the integrated diagnostic index (SUVmax + SUVmean + ADCmean) was 0.973, and the 95% CI: 0.886-1.023 (P<0.001).Conclusions 18F-FDG PET/MR multimodal imaging has a degree of value in clinical diagnosis and differential diagnosis of TDL.
[Keywords] tumefactive demyelinating lesions;fluorodeoxyglucose;positron emission tomography;magnetic resonance imaging;cerebral tumor

WANG Kai   ZHANG Shu   QIAO Zhen   WU Tong   FAN Di   CHEN Qian   AI Lin*  

Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

Ai L, E-mail: ailin@bjtth.org

Conflicts of interest   None.

Received  2021-12-07
Accepted  2022-03-23
DOI: 10.12015/issn.1674-8034.2022.04.004
Cite this article as: Wang K, Zhang S, Qiao Z, et al. The diagnostic value of 18F-FDG PET/MR for cerebral tumefactive demyelinating lesions[J]. Chin J Magn Reson Imaging, 2022, 13(4): 20-25.DOI:10.12015/issn.1674-8034.2022.04.004

[1]
Plowman RS, Varma H. Prognostic factors in tumefactive demyelinating lesions: a retrospective study[J]. J Neurol Sci, 2021, 428: 117591. DOI: 10.1016/j.jns.2021.117591.
[2]
Paoletti M, Muzic SI, Marchetti F, et al. Differntial imaging of atypical demyelinating lesions of the central nervous system[J]. Radiol Med, 2021, 126(6): 827-842. DOI: 10.1007/s11547-021-01334-y.
[3]
Barraza G, Deiva K, Husson B, et al. Imaging in pediatric multiple sclerosis: an iconographic review[J]. Clin Neuroradiol, 2021, 31(1): 61-71. DOI: 10.1007/s00062-020-00929-8.
[4]
Nakayama M, Naganawa S, Ouyang M, et al. A review of clinical and imaging findings in tumefactive demyelination[J]. Am J Roentgenol, 2021, 19: 1-12. DOI: 10.2214/AJR.20.23226.
[5]
Suh CH, Kim HS, Jung SC, et al. MRI Findings in tumefactive demyelinating lesions: a systematic review and meta-analysis[J]. Am J Neuroradiol, 2018, 39(9): 1643-1649. DOI: 10.3174/ajnr.A5775.
[6]
Kepes JJ. Large focal tumor-like demyelinating lesions of the brain: intermediate entity between multiple sclerosis and acute disseminated encephalomyelitis? A study of 31 patients[J]. Ann Neurol, 1993, 33(1): 18-27. DOI: 10.1002/ana.410330105.
[7]
Barbosa BC, Marchiori E, Leal Leidersnaider C, et al. Demyelinating lesions behaving like aggressive tumors on advanced MRI techniques[J]. Neuroradiol J, 2019, 32(2): 103-107. DOI: 10.1177/1971400919826394.
[8]
Sanchez P, Chan F, Hardy TA. Tumefactive demyelination: updated perspectives on diagnosis and management[J]. Expert Rev Neurother, 2021, 21(9): 1005-1017. DOI: 10.1080/14737175.2021.1971077.
[9]
Tremblay MA, Villanueva-Meyer JE, Cha S, et al. Clinical and imaging correlation in patients with pathologically confirmed tumefactive demyelinating lesions[J]. J Neurol Sci, 2017, 381: 83-87. DOI: 10.1016/j.jns.2017.08.015.
[10]
Lu SS, Kim SJ, Kim N, et al. Histogram analysis of apparent diffusion coefficient maps for differentiating primary CNS lymphomas from tumefactive demyelinating lesions[J]. AJR Am J Roentgenol, 2015, 204(4): 827-834. DOI: 10.2214/AJR.14.12677.
[11]
Mabray MC, Cohen BA, Villanueva-Meyer JE, et al. Performance of Apparent Diffusion Coefficient Values and Conventional MRI Features in Differentiating Tumefactive Demyelinating Lesions From Primary Brain Neoplasms[J]. AJR Am J Roentgenol, 2015, 205(5): 1075-1085. DOI: 10.2214/AJR.14.13970.
[12]
Naik S, Bhoi SK, Agarwal V, et al. Perfusion MRI may facilitate the diagnosis of a tumefactive demyelinating lesion[J]. Neurol India, 2019, 67(3): 908-910. DOI: 10.4103/0028-3886.263196.
[13]
Cianfoni A, Niku S, Imbesi SG. Metabolite findings in tumefactive demyelinating lesions utilizing short echo time proton magnetic resonance spectroscopy[J]. AJNR Am J Neuroradiol, 2007, 28(2): 272-277.
[14]
Lu SS, Kim SJ, Kim HS, et al. Utility of proton MR spectroscopy for differentiating typical and atypical primary central nervous system lymphomas from tumefactive demyelinating lesions[J]. AJNR Am J Neuroradiol, 2014, 35(2): 270-277. DOI: 10.3174/ajnr.A3677.
[15]
Ikeguchi R, Shimizu Y, Abe K, et al. Proton magnetic resonance spectroscopy differentiates tumefactive demyelinating lesions from gliomas[J]. Mult Scler Relat Disord, 2018, 26: 77-84. DOI: 10.1016/j.msard.2018.08.025.
[16]
Toh CH, Wei KC, Ng SH, et al. Differentiation of tumefactive demyelinating lesions from high-grade gliomas with the use of diffusion tensor imaging[J]. AJNR Am J Neuroradiol, 2012, 33(5): 846-851. DOI: 10.3174/ajnr.A2871.
[17]
Zhang Y, Liang K, He J, et al. Deep Learning With Data Enhancement for the Differentiation of Solitary and Multiple Cerebral Glioblastoma, Lymphoma, and Tumefactive Demyelinating Lesion[J]. Front Oncol, 2021, 11: 665891. DOI: 10.3389/fonc.2021.665891.
[18]
Hashimoto S, Inaji M, Nariai T, et al. Usefulness of 11C-methionine PET in the differentiation of tumefactive multiple sclerosis from high grade astrocytoma[J]. Neurol Med Chir (Tokyo), 2019, 59(5): 176-183. DOI: 10.2176/nmc.oa.
[19]
French. Tumefactive multiple sclerosis versus high-grade glioma: a diagnostic dilemma[J]. Srug Neurol Int, 2021, 3(12): 199. DOI: 10.25259/SNI_901_2020.
[20]
Wynne D, Ho BKH, Han TF. Tumefactive demyelination appearing as multiple cystic brain lesions[J]. World Neurosurg, 2021, 153: 6-8. DOI: 10.1016/j.wneu.2021.05.132.
[21]
Kumar S, Datta AK, Chakraborty U, et al. Tumefactive demyelination: a clinic-radiological dilemma[J]. J R Coll Physicians Edinb, 2021, 51(3): 278-280. DOI: 10.4997/JRCPE.2021.316.
[22]
Yasuda S, Yano H, Kimura A, et al. Frontal Tumefactive Demyelinating Lesion Mimicking Glioblastoma Differentiated by Methionine Positron Emission Tomography[J]. World Neurosurg, 2018, 119: 244-248. DOI: 10.1016/j.wneu.2018.08.027.
[23]
Barbagallo M, Albatly AA, Schreiner S, et al. Value of 18F-FET PET in Patients With Suspected Tumefactive Demyelinating Disease-Preliminary Experience From a Retrospective Analysis[J]. Clin Nucl Med, 2018, 43(11): e385-e391. DOI: 10.1097/RLU.0000000000002244.
[24]
Chiavazza C, Cistaro A, Fania P, et al. Reversible disconnection syndrome in a case of acute tumefactive demyelinating lesion: a PET study[J]. Neurol Sci, 2016, 37(12): 2019-2023. DOI: 10.1007/s10072-016-2675-x.
[25]
Singhal T, Narayanan TK, Jain V, et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas[J]. Mol Imaging Biol, 2008, 10(1): 1-18. DOI: 10.1007/s11307-007-0115-2.
[26]
Gregorio MD, Clerici VLAT, Fenu G, et al. Defining the course of tumefactive multiple sclerosis: a large retrospective multicentre study[J]. Eur J Neurol, 2021, 28(4): 1299-1307. DOI: 10.1111/ene.14672.
[27]
Shishido-Hara Y, Akazawa K, Takeuchi H, et al. Radiologic-pathologic association of tumor-like lesions with inflammation in cerebral white matter: comparison of two cases with distinct clinical outcomes[J]. Neuropathology, 2021, 41(6): 468-475. DOI: 10.1111/neup.12766.

PREV Construction of a nomogram model for hemorrhagic transformation risk after mechanical thrombectomy in patients with acute stroke
NEXT Differential diagnosis of cerebral alveolar echinococcosis and brain metastases based on MRI perfusion weighted imaging and support vector machine
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn