Share:
Share this content in WeChat
X
Reviews
Principle of T1 mapping technique and its research progress in myocardial quantification
JIA Taoyu  QIN Peixin  HU Feng  ZHOU Xiaobing  LU Ling  PAN Cunxue  LI Shaolin 

Cite this article as: Jia TY, Qin PX, Hu F, et al. Principle of T1 mapping technique and its research progress in myocardial quantification[J]. Chin J Magn Reson Imaging, 2022, 13(3): 151-158. DOI:10.12015/issn.1674-8034.2022.03.037.


[Abstract] A pixel-by-pixel method of quantifying longitudinal relaxation time (T1 mapping) is a non-invasive imaging method for evaluating myocardial tissue characteristics, which can provide a variety of quantitative parameters for diagnosis, treatment and prognosis of cardiomyopathy. In the technical development of cardiac T1 mapping in the past 20 years, both the preparation pulse and readout sequence have been continuously optimized. In this paper, cardiac T1 mapping technology is classified into three different preparation pulses (inversion recovery pulse, saturation recovery pulse and their combination of preparation pulse) and two different readout sequences (balanced steady-state free precession sequence and fast low-angle shot sequence). Their optimization development process and clinical application are reviewed, and the imaging principle is illustrated by taking the most representative T1mapping sequence as an example.
[Keywords] cardiac magnetic resonance;T1 mapping;modified Look-Locker inversion-recovery;saturation recovery single-shot acquisition;balanced steady-state free precession sequence;fast low angle shot sequence;extracellular volume;myocardiopathy

JIA Taoyu   QIN Peixin   HU Feng   ZHOU Xiaobing   LU Ling   PAN Cunxue*   LI Shaolin  

Department of Radiology, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China

Pan CX, E-mail: pancx@mail.sysu.edu.cn

Conflicts of interest   None.

Received  2021-08-17
Accepted  2022-03-11
DOI: 10.12015/issn.1674-8034.2022.03.037
Cite this article as: Jia TY, Qin PX, Hu F, et al. Principle of T1 mapping technique and its research progress in myocardial quantification[J]. Chin J Magn Reson Imaging, 2022, 13(3): 151-158.DOI:10.12015/issn.1674-8034.2022.03.037

[1]
Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J]. J Cardiovasc Magn Reson, 2017, 19(1): 75. DOI: 10.1186/s12968-017-0389-8.
[2]
Garg P, Saunders LC, Swift AJ, et al. Role of cardiac T1 mapping and extracellular volume in the assessment of myocardial infarction[J]. Anatol J Cardiol, 2018, 19(6): 404-411. DOI: 10.14744/AnatolJCardiol.2018.39586.
[3]
Wamil M, Borlotti A, Liu D, et al. Combined T1-mapping and tissue tracking analysis predicts severity of ischemic injury following acute STEMI-an Oxford Acute Myocardial Infarction (OxAMI) study[J]. Int J Cardiovasc Imaging, 2019, 35(7): 1297-1308. DOI: 10.1007/s10554-019-01542-8.
[4]
Shin JM, Choi EY, Park CH, et al. Quantitative T1 mapping for detecting microvascular obstruction in reperfused acute myocardial infarction: comparison with late gadolinium enhancement imaging[J]. Korean J Radiol, 2020, 21(8): 978-986. DOI: 10.3348/kjr.2019.0736.
[5]
Nadjiri J, Zaschka AL, Straeter AS, et al. Evaluation of a shortened cardiac MRI protocol for left ventricular examinations: diagnostic performance of T1-mapping and myocardial function analysis[J]. BMC Med Imaging, 2019, 19(1): 57. DOI: 10.1186/s12880-019-0358-9.
[6]
Muscogiuri G, Suranyi P, Schoepf UJ, et al. Cardiac magnetic resonance T1-mapping of the myocardium: technical background and clinical relevance[J]. J Thorac Imaging, 2018, 33(2): 71-80. DOI: 10.1097/RTI.0000000000000270.
[7]
Robinson AA, Chow K, Salerno M. Myocardial T1 and ECV measurement: underlying concepts and technical considerations[J]. JACC Cardiovasc Imaging, 2019, 12(11Pt 2): 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
[8]
Weingärtner S, Meßner NM, Budjan J, et al. Myocardial T1-mapping at 3T using saturation-recovery: reference values, precision and comparison with MOLLI[J]. J Cardiovasc Magn Reson, 2017, 18: 84. DOI: 10.1186/s12968-016-0302-x.
[9]
Roujol S, Weingärtner S, Foppa M, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE[J]. Radiology, 2014, 272(3): 683-689. DOI: 10.1148/radiol.14140296.
[10]
Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision[J]. J Cardiovasc Magn Reson, 2014, 16(1): 2. DOI: 10.1186/1532-429X-16-2.
[11]
Aherne E, Chow K, Carr J. Cardiac T 1 mapping: techniques and applications[J]. J Magn Reson Imaging, 2020, 51(5): 1336-1356. DOI: 10.1002/jmri.26866.
[12]
Kim PK, Hong YJ, Im DJ, et al. Myocardial T1 and T2 mapping: techniques and clinical applications[J]. Korean J Radiol, 2017, 18(1): 113-131. DOI: 10.3348/kjr.2017.18.1.113.
[13]
Flacke SJ, Fischer SE, Lorenz CH. Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and elevation in acute and chronic infarction[J]. Radiology, 2001, 218(3): 703-710. DOI: 10.1148/radiology.218.3.r01fe18703.
[14]
Messroghli DR, Radjenovic A, Kozerke S, et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart[J]. Magn Reson Med, 2004, 52(1): 141-146. DOI: 10.1002/mrm.20110.
[15]
Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold[J]. J Cardiovasc Magn Reson, 2010, 12: 69. DOI: 10.1186/1532-429X-12-69.
[16]
Mehta BB, Chen X, Bilchick KC, et al. Accelerated and navigator-gated look-locker imaging for cardiac T1 estimation (ANGIE): development and application to T1 mapping of the right ventricle[J]. Magn Reson Med, 2015, 73(1): 150-160. DOI: 10.1002/mrm.25100.
[17]
Chow K, Flewitt JA, Green JD, et al. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping[J]. Magn Reson Med, 2014, 71(6): 2082-2095. DOI: 10.1002/mrm.24878.
[18]
Song T, Stainsby JA, Ho VB, et al. Flexible cardiac T1 mapping using a modified Look-Locker acquisition with saturation recovery[J]. Magn Reson Med, 2012, 67(3): 622-627. DOI: 10.1002/mrm.24137.
[19]
Fitts M, Breton E, Kholmovski EG, et al. Arrhythmia insensitive rapid cardiac T1 mapping pulse sequence[J]. Magn Reson Med, 2013, 70(5): 1274-1282. DOI: 10.1002/mrm.24586.
[20]
Matsumoto S, Okuda S, Yamada Y, et al. Myocardial T1 values in healthy volunteers measured with saturation method using adaptive recovery times for T1 mapping (SMART1Map) at 1.5 T and 3 T[J]. Heart Vessels, 2019, 34(11): 1889-1894. DOI: 10.1007/s00380-019-01401-5.
[21]
Weingärtner S, Akçakaya M, Basha T, et al. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability[J]. Magn Reson Med, 2014, 71(3): 1024-1034. DOI: 10.1002/mrm.24761.
[22]
Weingärtner S, Moeller S, Schmitter S, et al. Simultaneous multislice imaging for native myocardial T 1 mapping: improved spatial coverage in a single breath-hold[J]. Magn Reson Med, 2017, 78(2): 462-471. DOI: 10.1002/mrm.26770.
[23]
Bentatou Z, Troalen T, Bernard M, et al. Simultaneous multi-slice T1 mapping using MOLLI with blipped CAIPIRINHA bSSFP[J]. Magn Reson Imaging, 2020: S0730-S725X(19)30796-9. DOI: 10.1016/j.mri.2020.03.006.
[24]
Marty B, Coppa B, Carlier PG. Fast, precise, and accurate myocardial T 1 mapping using a radial MOLLI sequence with FLASH readout[J]. Magn Reson Med, 2018, 79(3): 1387-1398. DOI: 10.1002/mrm.26795.
[25]
Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times[J]. Rev Sci Instrum, 1970, 41(2): 250-251. DOI: 10.1063/1.1684482.
[26]
Brix G, Schad LR, Deimling M, et al. Fast and precise T1 imaging using a TOMROP sequence[J]. Magn Reson Imaging, 1990, 8(4): 351-356. DOI: 10.1016/0730-725x(90)90041-y.
[27]
Deichmann R, Haase A. Quantification of T1 values by SNAPSHOT-FLASH NMR imaging[J]. J Magn Reson 1969, 1992, 96(3): 608-612. DOI: 10.1016/0022-2364(92)90347-A.
[28]
Shao JX, Nguyen KL, Natsuaki Y, et al. Instantaneous signal loss simulation (InSiL): an improved algorithm for myocardial T₁ mapping using the MOLLI sequence[J]. J Magn Reson Imaging, 2015, 41(3): 721-729. DOI: 10.1002/jmri.24599.
[29]
Kellman P, Herzka DA, Hansen MS. Adiabatic inversion pulses for myocardial T1 mapping[J]. Magn Reson Med, 2014, 71(4): 1428-1434. DOI: 10.1002/mrm.24793.
[30]
Nezafat M, Ramos IT, Henningsson M, et al. Improved segmented modified Look-Locker inversion recovery T1 mapping sequence in mice[J]. PLoS One, 2017, 12(11): e0187621. DOI: 10.1371/journal.pone.0187621.
[31]
Liu SF, Bustin A, Ferry P, et al. A vectorized Levenberg-Marquardt model fitting algorithm for efficient post-processing of cardiac T 1 mapping MRI[J]. Comput Biol Med, 2018, 96: 106-115. DOI: 10.1016/j.compbiomed.2018.03.009.
[32]
Heidenreich JF, Weng AM, Donhauser J, et al. T1- and ECV-mapping in clinical routine at 3 T: differences between MOLLI, ShMOLLI and SASHA[J]. BMC Med Imaging, 2019, 19(1): 59. DOI: 10.1186/s12880-019-0362-0.
[33]
Delso G, Farré L, Ortiz-Pérez JT, et al. Improving the robustness of MOLLI T1 maps with a dedicated motion correction algorithm[J]. Sci Rep, 2021, 11(1): 18546. DOI: 10.1038/s41598-021-97841-z.
[34]
Dual SA, Maforo NG, McElhinney DB, et al. Right ventricular function and T1-mapping in boys with Duchenne muscular dystrophy[J]. J Magn Reson Imaging, 2021, 54(5): 1503-1513. DOI: 10.1002/jmri.27729.
[35]
Guo R, El-Rewaidy H, Assana S, et al. Accelerated cardiac T 1 mapping in four heartbeats with inline MyoMapNet: a deep learning-based T 1 estimation approach[J]. J Cardiovasc Magn Reson, 2022, 24(1): 6. DOI: 10.1186/s12968-021-00834-0.
[36]
Becker KM, Blaszczyk E, Funk S, et al. Fast myocardial T1 mapping using cardiac motion correction[J]. Magn Reson Med, 2020, 83(2): 438-451. DOI: 10.1002/mrm.27935.
[37]
Qi HK, Jaubert O, Bustin A, et al. Free-running 3D whole heart myocardial T 1 mapping with isotropic spatial resolution[J]. Magn Reson Med, 2019, 82(4): 1331-1342. DOI: 10.1002/mrm.27811.
[38]
Higgins DM, Ridgway JP, Radjenovic A, et al. T1 measurement using a short acquisition period for quantitative cardiac applications[J]. Med Phys, 2005, 32(6): 1738-1746. DOI: 10.1118/1.1921668.
[39]
Nordio G, Bustin A, Henningsson M, et al. 3D SASHA myocardial T1 mapping with high accuracy and improved precision[J]. MAGMA, 2019, 32(2): 281-289. DOI: 10.1007/s10334-018-0703-y.
[40]
Bustin A, Ferry P, Codreanu A, et al. Impact of denoising on precision and accuracy of saturation-recovery-based myocardial T1 mapping[J]. J Magn Reson Imaging, 2017, 46(5): 1377-1388. DOI: 10.1002/jmri.25684.
[41]
Nordio G, Henningsson M, Chiribiri A, et al. 3D myocardial T 1 mapping using saturation recovery[J]. J Magn Reson Imaging, 2017, 46(1): 218-227. DOI: 10.1002/jmri.25575.
[42]
Nordio G, Bustin A, Odille F, et al. Faster 3D saturation-recovery based myocardial T1 mapping using a reduced number of saturation points and denoising[J]. PLoS One, 2020, 15(4): e0221071. DOI: 10.1371/journal.pone.0221071.
[43]
Ferreira da Silva T, Galan-Arriola C, Montesinos P, et al. Single breath-hold saturation recovery 3D cardiac T1 mapping via compressed SENSE at 3T[J]. MAGMA, 2020, 33(6): 865-876. DOI: 10.1007/s10334-020-00848-2.
[44]
Bhatt N, Ramanan V, Gunraj H, et al. Technical Note: fully automatic segmental relaxometry (FASTR) for cardiac magnetic resonance T1 mapping[J]. Med Phys, 2021, 48(4): 1815-1822. DOI: 10.1002/mp.14710.
[45]
Guo R, Cai XY, Kucukseymen S, et al. Free-breathing whole-heart multi-slice myocardial T 1 mapping in 2 minutes[J]. Magn Reson Med, 2021, 85(1): 89-102. DOI: 10.1002/mrm.28402.
[46]
Scheffler K, Hennig J. T(1) quantification with inversion recovery TrueFISP[J]. Magn Reson Med, 2001, 45(4): 720-723. DOI: 10.1002/mrm.1097.
[47]
Gai ND, Stehning C, Nacif M, et al. Modified Look-Locker T1 evaluation using Bloch simulations: human and phantom validation[J]. Magn Reson Med, 2013, 69(2): 329-336. DOI: 10.1002/mrm.24251.
[48]
Robson MD, Piechnik SK, Tunnicliffe EM, et al. T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences[J]. Magn Reson Med, 2013, 70(3): 664-670. DOI: 10.1002/mrm.24867.
[49]
Wieben O, Francois C, Reeder SB. Cardiac MRI of ischemic heart disease at 3 T: potential and challenges[J]. Eur J Radiol, 2008, 65(1): 15-28. DOI: 10.1016/j.ejrad.2007.10.022.
[50]
Bhuva AN, Treibel TA, Seraphim A, et al. Measurement of T1 mapping in patients with cardiac devices: off-resonance error extends beyond visual artifact but can be quantified and corrected[J]. Front Cardiovasc Med, 2021, 8: 631366. DOI: 10.3389/fcvm.2021.631366.
[51]
Kramer CM, Barkhausen J, Bucciarelli-Ducci C, et al. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update[J]. J Cardiovasc Magn Reson, 2020, 22(1): 17. DOI: 10.1186/s12968-020-00607-1.
[52]
Shao JX, Rashid S, Renella P, et al. Myocardial T1 mapping for patients with implanted cardiac devices using wideband inversion recovery spoiled gradient echo readout[J]. Magn Reson Med, 2017, 77(4): 1495-1504. DOI: 10.1002/mrm.26223.
[53]
Wang XQ, Rosenzweig S, Scholand N, et al. Model-based reconstruction for simultaneous multi-slice [Formula: see text] mapping using single-shot inversion-recovery radial FLASH[J]. Magn Reson Med, 2021, 85(3): 1258-1271. DOI: 10.1002/mrm.28497.
[54]
Serry FM, Ma S, Mao XL, et al. Dual flip-angle IR-FLASH with spin history mapping for B1+ corrected T1 mapping: application to T1 cardiovascular magnetic resonance multitasking[J]. Magn Reson Med, 2021, 86(6): 3182-3191. DOI: 10.1002/mrm.28935.
[55]
Rodgers CT, Piechnik SK, DelaBarre LJ, et al. Inversion recovery at 7 T in the human myocardium: measurement of T1, inversion efficiency and B1+[J]. Magn Reson Med, 2013, 70(4): 1038-1046. DOI: 10.1002/mrm.24548.
[56]
Shao JX, Rapacchi S, Nguyen KL, et al. Myocardial T1 mapping at 3.0 tesla using an inversion recovery spoiled gradient echo readout and Bloch equation simulation with slice profile correction (BLESSPC) T1 estimation algorithm[J]. J Magn Reson Imaging, 2016, 43(2): 414-425. DOI: 10.1002/jmri.24999.
[57]
Blume U, Lockie T, Stehning C, et al. Interleaved T1 and T2 relaxation time mapping for cardiac applications[J]. J Magn Reson Imaging, 2009, 29(2): 480-487. DOI: 10.1002/jmri.21652.
[58]
Hamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density[J]. Magn Reson Med, 2017, 77(4): 1446-1458. DOI: 10.1002/mrm.26216.
[59]
Hamilton JI, Jiang Y, Eck B, et al. Cardiac cine magnetic resonance fingerprinting for combined ejection fraction, T1 and T2 quantification[J]. NMR Biomed, 2020, 33(8): e4323. DOI: 10.1002/nbm.4323.
[60]
Santini F, Kawel-Boehm N, Greiser A, et al. Simultaneous T1 and T2 quantification of the myocardium using cardiac balanced-SSFP inversion recovery with interleaved sampling acquisition (CABIRIA)[J]. Magn Reson Med, 2015, 74(2): 365-371. DOI: 10.1002/mrm.25402.
[61]
Kvernby S, Warntjes M, Engvall J, et al. Clinical feasibility of 3D-QALAS-Single breath-hold 3D myocardial T1- and T2-mapping[J]. Magn Reson Imaging, 2017, 38: 13-20. DOI: 10.1016/j.mri.2016.12.014.
[62]
Akçakaya M, Weingärtner S, Basha TA, et al. Joint myocardial T1 and T2 mapping using a combination of saturation recovery and T2-preparation[J]. Magn Reson Med, 2016, 76(3): 888-896. DOI: 10.1002/mrm.25975.
[63]
Jaubert O, Cruz G, Bustin A, et al. Free-running cardiac magnetic resonance fingerprinting: joint T1/T2 map and Cine imaging[J]. Magn Reson Imaging, 2020, 68: 173-182. DOI: 10.1016/j.mri.2020.02.005.
[64]
Hermann I, Kellman P, Demirel OB, et al. Free-breathing simultaneous T1, T2, and T2 quantification in the myocardium[J]. Magn Reson Med, 2021, 86(3): 1226-1240. DOI: 10.1002/mrm.28753.
[65]
Lima da Cruz GJ, Velasco C, Lavin B, et al. Myocardial T1, T2, T2*, and fat fraction quantification via low-rank motion-corrected cardiac MR fingerprinting[J]. Magn Reson Med, 2022. DOI: 10.1002/mrm.29171.
[66]
Guo R, Cai XY, Kucukseymen S, et al. Free-breathing simultaneous myocardial T 1 and T 2 mapping with whole left ventricle coverage[J]. Magn Reson Med, 2021, 85(3): 1308-1321. DOI: 10.1002/mrm.28506.
[67]
Kellman P, Xue H, Chow K, et al. Bright-blood and dark-blood phase sensitive inversion recovery late gadolinium enhancement and T1 and T2 maps in a single free-breathing scan: an all-in-one approach[J]. J Cardiovasc Magn Reson, 2021, 23(1): 126. DOI: 10.1186/s12968-021-00823-3.
[68]
Shao JX, Zhou ZW, Nguyen KL, et al. Accurate, precise, simultaneous myocardial T1 and T2 mapping using a radial sequence with inversion recovery and T2 preparation[J]. NMR Biomed, 2019, 32(11): e4165. DOI: 10.1002/nbm.4165.
[69]
Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement[J]. J Cardiovasc Magn Reson, 2013, 15(1): 92. DOI: 10.1186/1532-429X-15-92.
[70]
Treibel TA, Fridman Y, Bering P, et al. Extracellular volume associates with outcomes more strongly than native or post-contrast myocardial T1[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 44-54. DOI: 10.1016/j.jcmg.2019.03.017.
[71]
Treibel TA, Fontana M, Maestrini V, et al. Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling[J]. JACC Cardiovasc Imaging, 2016, 9(1): 54-63. DOI: 10.1016/j.jcmg.2015.11.008.
[72]
Nordlund D, Xanthis C, Bidhult S, et al. Measuring extracellular volume fraction by MRI: first verification of values given by clinical sequences[J]. Magn Reson Med, 2020, 83(2): 662-672. DOI: 10.1002/mrm.27938.
[73]
Weingärtner S, Roujol S, Akçakaya M, et al. Free-breathing multislice native myocardial T 1 mapping using the slice-interleaved T 1 (STONE) sequence[J]. Magn Reson Med, 2015, 74(1): 115-124. DOI: 10.1002/mrm.25387.
[74]
Liu D, Borlotti A, Viliani D, et al. CMR native T1 mapping allows differentiation of reversible versus irreversible myocardial damage in ST-segment-elevation myocardial infarction: an OxAMI study (Oxford acute myocardial infarction)[J]. Circ Cardiovasc Imaging, 2017, 10(8): e005986. DOI: 10.1161/CIRCIMAGING.116.005986.
[75]
Robbers LFHJ, Nijveldt R, Beek AM, et al. The influence of microvascular injury on native T1 and T2* relaxation values after acute myocardial infarction: implications for non-contrast-enhanced infarct assessment[J]. Eur Radiol, 2018, 28(2): 824-832. DOI: 10.1007/s00330-017-5010-x.
[76]
Deborde E, Dubourg B, Bejar S, et al. Differentiation between Fabry disease and hypertrophic cardiomyopathy with cardiac T1 mapping[J]. Diagn Interv Imaging, 2020, 101(2): 59-67. DOI: 10.1016/j.diii.2019.08.006.
[77]
Xu J, Zhuang BY, Sirajuddin A, et al. MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651.
[78]
Maestrini V, Torlasco C, Hughes R, et al. Cardiovascular magnetic resonance and sport cardiology: a growing role in clinical dilemmas[J]. J Cardiovasc Transl Res, 2020, 13(3): 296-305. DOI: 10.1007/s12265-020-10022-7.
[79]
Li YC, Liu XM, Yang FY, et al. Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy[J]. Eur Radiol, 2021, 31(7): 4557-4567. DOI: 10.1007/s00330-020-07650-7.
[80]
Dass S, Suttie JJ, Piechnik SK, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy[J]. Circ Cardiovasc Imaging, 2012, 5(6): 726-733. DOI: 10.1161/CIRCIMAGING.112.976738.
[81]
Shao XN, Jin YN, Sun YJ, et al. Evaluation of the correlation between myocardial fibrosis and ejection fraction in dilated cardiomyopathy using magnetic resonance T1 mapping[J]. Eur Rev Med Pharmacol Sci, 2020, 24(23): 12300-12305. DOI: 10.26355/eurrev_202012_24022.
[82]
Li S, Zhou D, Sirajuddin A, et al. T1 mapping and extracellular volume fraction in dilated cardiomyopathy: a prognosis study[J]. JACC Cardiovasc Imaging, 2021, S1936-878X(21)00623-9. DOI: 10.1016/j.jcmg.2021.07.023.
[83]
Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[84]
Palmisano A, Benedetti G, Faletti R, et al. Early T1 myocardial MRI mapping: value in detecting myocardial hyperemia in acute myocarditis[J]. Radiology, 2020, 295(2): 316-325. DOI: 10.1148/radiol.2020191623.
[85]
Cui Q, Yu J, Shen W. Late gadolinium enhancement and T1 mapping for the diagnosis of cardiac amyloidosis[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2019, 31(12): 1538-1541. DOI: 10.3760/cma.j.issn.2095-4352.2019.12.021.
[86]
Pan JA, Kerwin MJ, Salerno M. Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis: a meta-analysis[J]. JACC Cardiovasc Imaging, 2020, 13(6): 1299-1310. DOI: 10.1016/j.jcmg.2020.03.010.
[87]
Panovský R, Doubková M, Holeček T, et al. Myocardial T 1 mapping using SMART 1 Map and MOLLI mapping in asymptomatic patients with recent extracardiac sarcoidosis[J]. NMR Biomed, 2020, 33(11): e4388. DOI: 10.1002/nbm.4388.
[88]
Wu LM, Chen BH, Yao QY, et al. Quantitative diffusion-weighted magnetic resonance imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy compared with T1 mapping[J]. Int J Cardiovasc Imaging, 2016, 32(8): 1289-1297. DOI: 10.1007/s10554-016-0909-x.
[89]
Kato S, Nakamori S, Bellm S, et al. Myocardial native T1 time in patients with hypertrophic cardiomyopathy[J]. Am J Cardiol, 2016, 118(7): 1057-1062. DOI: 10.1016/j.amjcard.2016.07.010.
[90]
Kranzusch R, Aus dem Siepen F, Wiesemann S, et al. Z-score mapping for standardized analysis and reporting of cardiovascular magnetic resonance modified Look-Locker inversion recovery (MOLLI) T1 data: normal behavior and validation in patients with amyloidosis[J]. J Cardiovasc Magn Reson, 2020, 22(1): 6. DOI: 10.1186/s12968-019-0595-7.
[91]
Popescu IA, Werys K, Zhang Q, et al. Standardization of T1-mapping in cardiovascular magnetic resonance using clustered structuring for benchmarking normal ranges[J]. Int J Cardiol, 2021, 326: 220-225. DOI: 10.1016/j.ijcard.2020.10.041.

PREV Research progress of cardiac magnetic resonance imaging in anthracycline-induced cardiotoxicity
NEXT Application progress of MRI radiomics in the efficacy and prognosis of neoadjuvant chemotherapy for breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn