Share this content in WeChat
Advances in fMRI research in substance-related and addictive disorders
DAI Yunrui  CHEN Jun 

Cite this article as: Dai YR, Chen J. Advances in fMRI research in substance-related and addictive disorders[J]. Chin J Magn Reson Imaging, 2022, 13(3): 138-142. DOI:10.12015/issn.1674-8034.2022.03.034.

[Abstract] Addiction is a disease affecting decision-making, the emotional balance, the control of behaviour, not only in cases of psychoactive products use but also in behavioural dependencies, collectively known as substance-related and addictive disorders. Substance-related and addictive disorders impose enormous health and economic burdens on individuals, families, communities, and society. Changes in brain function caused by long-term addiction are key to the development and maintenance of the addiction process. How to objectively assess such changes becomes a hotspot of research. Alcohol use disorder, nicotine use disorder, marijuana use disorder, and other non-substance addictions lead to dysfunction of multiple brain circuits that sustain addiction, functional magnetic resonance imaging (fMRI) can be used to objectively assess the changes in brain function of patients, which is beneficial for clinicians to choose treatment options and evaluate prognosis. The purpose of this paper is to review relevant research at home and abroad, and to review the progress of fMRI research on substance-related and addictive disorders.
[Keywords] substance-related and addictive disorders;functional magnetic resonance imaging;neurophysiology

DAI Yunrui1   CHEN Jun2*  

1 Department of Magnatic Resonance Imaging, the First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China

2 Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Chen J, E-mail:

Conflicts of interest   None.

Received  2021-09-27
Accepted  2022-02-21
DOI: 10.12015/issn.1674-8034.2022.03.034
Cite this article as: Dai YR, Chen J. Advances in fMRI research in substance-related and addictive disorders[J]. Chin J Magn Reson Imaging, 2022, 13(3): 138-142.DOI:10.12015/issn.1674-8034.2022.03.034

Popescu A, Marian M, Dragoi AM, et al. Understanding the genetics and neurobiological pathways behind addiction (Review)[J]. Exp Ther Med, 2021, 21(5): 544. DOI: 10.3892/etm.2021.9976.
GBD 2016 Alcohol and Drug Use Collaborators. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Psychiatry, 2018, 5(12): 987-1012. DOI: 10.1016/S2215-0366(18)30337-7.
Hendershot CS, Witkiewitz K, George WH, et al. Relapse prevention for addictive behaviors[J]. Subst Abuse Treat Prev Policy, 2011, 6: 17. DOI: 10.1186/1747-597X-6-17.
Volkow ND, Koob GF, McLellan AT. Neurobiologic Advances from the Brain Disease Model of Addiction[J]. N Engl J Med, 2016, 374(4): 363-371. DOI: 10.1056/NEJMra1511480.
Long D, Long B, Koyfman A. The emergency medicine management of severe alcohol withdrawal[J]. Am J Emerg Med, 2017, 35(7): 1005-1011. DOI: 10.1016/j.ajem.2017.02.002.
Dominic P, Ahmad J, Awwab H, et al. Stimulant Drugs of Abuse and Cardiac Arrhythmias[J]. Circ Arrhythm Electrophysiol, 2022, 15(1): e10273. DOI: 10.1161/CIRCEP.121.010273.
Kourrich S, Calu DJ, Bonci A. Intrinsic plasticity: an emerging player in addiction[J]. Nat Rev Neurosci, 2015, 16(3): 173-184. DOI: 10.1038/nrn3877.
Schultz W. Neuronal Reward and Decision Signals: From Theories to Data[J]. Physiol Rev, 2015, 95(3): 853-951. DOI: 10.1152/physrev.00023.2014.
Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues[J]. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1507): 3137-3146. DOI: 10.1098/rstb.2008.0093.
Englund EK, Fernandez-Seara MA, Rodriguez-Soto AE, et al. Calibrated fMRI for dynamic mapping of CMRO2 responses using MR-based measurements of whole-brain venous oxygen saturation[J]. J Cereb Blood Flow Metab, 2020, 40(7): 1501-1516. DOI: 10.1177/0271678X19867276.
Lemee JM, Berro DH, Bernard F, et al. Resting-state functional magnetic resonance imaging versus task-based activity for language mapping and correlation with perioperative cortical mapping[J]. Brain Behav, 2019, 9(10): e1362. DOI: 10.1002/brb3.1362.
Peng B, Yang Q, Joshi RB, et al. Role of Alcohol Drinking in Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis[J]. Int J Mol Sci, 2020, 21(7). DOI: 10.3390/ijms21072316.
Carter BL, Tiffany ST. Meta-analysis of cue-reactivity in addiction research[J]. Addiction, 1999, 94(3): 327-340.
Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review[J]. Addict Biol, 2013, 18(1): 121-133. DOI: 10.1111/j.1369-1600.2012.00464.x.
Dager AD, Anderson BM, Stevens MC, et al. Influence of alcohol use and family history of alcoholism on neural response to alcohol cues in college drinkers[J]. Alcohol Clin Exp Res, 2013, 37Suppl 1: E161-E171. DOI: 10.1111/j.1530-0277.2012.01879.x.
Fukushima S, Kuga H, Oribe N, et al. Behavioural cue reactivity to alcohol-related and non-alcohol-related stimuli among individuals with alcohol use disorder: An fMRI study with a visual task[J]. PLoS One, 2020, 15(7): e229187. DOI: 10.1371/journal.pone.0229187.
Zakiniaeiz Y, Scheinost D, Seo D, et al. Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals[J]. Neuroimage Clin, 2017, 13: 181-187. DOI: 10.1016/j.nicl.2016.10.019.
Rose AK, Jones A. Baclofen: its effectiveness in reducing harmful drinking, craving, and negative mood. A meta-analysis[J]. Addiction, 2018, 113(8): 1396-1406. DOI: 10.1111/add.14191.
Logge WB, Morris RW, Baillie AJ, et al. Baclofen attenuates fMRI alcohol cue reactivity in treatment-seeking alcohol dependent individuals[J]. Psychopharmacology (Berl), 2021, 238(5): 1291-1302. DOI: 10.1007/s00213-019-05192-5.
Vollstadt-Klein S, Bumb JM, Otto A, et al. The effects of nalmefene on emotion processing in alcohol use disorder - A randomized, controlled fMRI study[J]. Eur Neuropsychopharmacol, 2019, 29(12): 1442-1452. DOI: 10.1016/j.euroneuro.2019.10.014.
Kamarajan C, Ardekani BA, Pandey AK, et al. Random Forest Classification of Alcohol Use Disorder Using fMRI Functional Connectivity, Neuropsychological Functioning, and Impulsivity Measures[J]. Brain Sci, 2020, 10(2). DOI: 10.3390/brainsci10020115.
Bos DJ, Oranje B, Achterberg M, et al. Structural and functional connectivity in children and adolescents with and without attention deficit/hyperactivity disorder[J]. J Child Psychol Psychiatry, 2017, 58(7): 810-818. DOI: 10.1111/jcpp.12712.
Vergara VM, Liu J, Claus ED, et al. Alterations of resting state functional network connectivity in the brain of nicotine and alcohol users[J]. Neuroimage, 2017, 151: 45-54. DOI: 10.1016/j.neuroimage.2016.11.012.
Abdallah M, Zahr NM, Saranathan M, et al. Altered Cerebro-Cerebellar Dynamic Functional Connectivity in Alcohol Use Disorder: a Resting-State fMRI Study[J]. Cerebellum, 2021. DOI: 10.1007/s12311-021-01241-y.
Kim JI, Lee JD, Hwang HJ, et al. Altered subcallosal and posterior cingulate cortex-based functional connectivity during smoking cue and mental simulation processing in smokers[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 97: 109772. DOI: 10.1016/j.pnpbp.2019.109772.
Weiland BJ, Sabbineni A, Calhoun VD, et al. Reduced executive and default network functional connectivity in cigarette smokers[J]. Hum Brain Mapp, 2015, 36(3): 872-882. DOI: 10.1002/hbm.22672.
Franklin TR, Jagannathan K, Spilka NH, et al. Smoking-induced craving relief relates to increased DLPFC-striatal coupling in nicotine-dependent women[J]. Drug Alcohol Depend, 2021, 221: 108593. DOI: 10.1016/j.drugalcdep.2021.108593.
Pogun S, Yararbas G, Nesil T, et al. Sex differences in nicotine preference[J]. J Neurosci Res, 2017, 95(1-2): 148-162. DOI: 10.1002/jnr.23858.
McCarthy JM, Dumais KM, Zegel M, et al. Sex differences in tobacco smokers: Executive control network and frontostriatal connectivity[J]. Drug Alcohol Depend, 2019, 195: 59-65. DOI: 10.1016/j.drugalcdep.2018.11.023.
Hu BM, Li CL, Jing B, et al. Study of restin-state fMRI on brain function connection in smokers[J]. Chin J Med Imaging Technol, 2018, 34(4): 486-490. DOI: 10.13929/j.1003-3289.201709083.
Huang W, King JA, Ursprung WW, et al. The development and expression of physical nicotine dependence corresponds to structural and functional alterations in the anterior cingulate-precuneus pathway[J]. Brain Behav, 2014, 4(3): 408-417. DOI: 10.1002/brb3.227.
Zhao S, Li Y, Li M, et al. 12-h abstinence-induced functional connectivity density changes and craving in young smokers: a resting-state study[J]. Brain Imaging Behav, 2019, 13(4): 953-962. DOI: 10.1007/s11682-018-9911-3.
Solinas M, Justinova Z, Goldberg SR, et al. Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats[J]. J Neurochem, 2006, 98(2): 408-419. DOI: 10.1111/j.1471-4159.2006.03880.x.
Raymond DR, Paneto A, Yoder KK, et al. Does Chronic Cannabis Use Impact Risky Decision-Making: An Examination of fMRI Activation and Effective Connectivity?[J]. Front Psychiatry, 2020, 11: 599256. DOI: 10.3389/fpsyt.2020.599256.
Aloi J, Meffert H, White SF, et al. Differential dysfunctions related to alcohol and cannabis use disorder symptoms in reward and error-processing neuro-circuitries in adolescents[J]. Dev Cogn Neurosci, 2019, 36: 100618. DOI: 10.1016/j.dcn.2019.100618.
Yip SW, DeVito EE, Kober H, et al. Pretreatment measures of brain structure and reward-processing brain function in cannabis dependence: an exploratory study of relationships with abstinence during behavioral treatment[J]. Drug Alcohol Depend, 2014, 140: 33-41. DOI: 10.1016/j.drugalcdep.2014.03.031.
Rossetti MG, Mackey S, Patalay P, et al. Sex and dependence related neuroanatomical differences in regular cannabis users: findings from the ENIGMA Addiction Working Group[J]. Transl Psychiatry, 2021, 11(1): 272. DOI: 10.1038/s41398-021-01382-y.
Wetherill RR, Jagannathan K, Hager N, et al. Sex differences in associations between cannabis craving and neural responses to cannabis cues: Implications for treatment[J]. Exp Clin Psychopharmacol, 2015, 23(4): 238-246. DOI: 10.1037/pha0000036.
Chen X, Yu B, Lasopa SO, et al. Current patterns of marijuana use initiation by age among US adolescents and emerging adults: implications for intervention[J]. Am J Drug Alcohol Abuse, 2017, 43(3): 261-270. DOI: 10.3109/00952990.2016.1165239.
Ritchay MM, Huggins AA, Wallace AL, et al. Resting state functional connectivity in the default mode network: Relationships between cannabis use, gender, and cognition in adolescents and young adults[J]. Neuroimage Clin, 2021, 30: 102664. DOI: 10.1016/j.nicl.2021.102664.
Pujol J, Blanco-Hinojo L, Batalla A, et al. Functional connectivity alterations in brain networks relevant to self-awareness in chronic cannabis users[J]. J Psychiatr Res, 2014, 51: 68-78. DOI: 10.1016/j.jpsychires.2013.12.008.
Wetherill RR, Fang Z, Jagannathan K, et al. Cannabis, cigarettes, and their co-occurring use: Disentangling differences in default mode network functional connectivity[J]. Drug Alcohol Depend, 2015, 153: 116-123. DOI: 10.1016/j.drugalcdep.2015.05.046.
Yau YH, Potenza MN. Gambling disorder and other behavioral addictions: recognition and treatment[J]. Harv Rev Psychiatry, 2015, 23(2): 134-146. DOI: 10.1097/HRP.0000000000000051.
Limbrick-Oldfield EH, Mick I, Cocks RE, et al. Neural substrates of cue reactivity and craving in gambling disorder[J]. Transl Psychiatry, 2017, 7(1): e992. DOI: 10.1038/tp.2016.256.
Power Y, Goodyear B, Crockford D. Neural correlates of pathological gamblers preference for immediate rewards during the iowa gambling task: an fMRI study[J]. J Gambl Stud, 2012, 28(4): 623-636. DOI: 10.1007/s10899-011-9278-5.
Lobo DS, Souza RP, Tong RP, et al. Association of functional variants in the dopamine D2-like receptors with risk for gambling behaviour in healthy Caucasian subjects[J]. Biol Psychol, 2010, 85(1): 33-37. DOI: 10.1016/j.biopsycho.2010.04.008.
Wang Y, Zheng L, Wang C, et al. Attenuated self-serving bias in people with internet gaming disorder is related to altered neural activity in subcortical-cortical midline structures[J]. BMC Psychiatry, 2020, 20(1): 512. DOI: 10.1186/s12888-020-02914-4.
Dong G, Li H, Wang L, et al. Cognitive control and reward/loss processing in Internet gaming disorder: Results from a comparison with recreational Internet game-users[J]. Eur Psychiatry, 2017, 44: 30-38. DOI: 10.1016/j.eurpsy.2017.03.004.
Chen S, Li H, Wang L, et al. A preliminary study of disrupted functional network in individuals with Internet gaming disorder: Evidence from the comparison with recreational game users[J]. Addict Behav, 2020, 102: 106202. DOI: 10.1016/j.addbeh.2019.106202.

PREV Research progress of cognitive impairment and neuroimaging in patients with spinal cord injury
NEXT MRI research progress of brain function and structure in patients with major depressive disorder before and after treatment

Tel & Fax: +8610-67113815    E-mail: