Share:
Share this content in WeChat
X
Reviews
Research progress of multimodal MRI of neuropsychiatric diseases based on linked independent component analysis
HU Bing  TAN Xuanyu  LIU Wanqing  LI Danyang  ZHANG Qing 

Cite this article as: Hu B, Tan XY, Liu WQ, et al. Research progress of multimodal MRI of neuropsychiatric diseases based on linked independent component analysis[J]. Chin J Magn Reson Imaging, 2022, 13(3): 129-133. DOI:10.12015/issn.1674-8034.2022.03.032.


[Abstract] Traditional multimodal MRI analysis is usually based on single-mode data, and the results are simply compared or correlated, but the a priori interaction information between modes is not fully utilized. Linked independent component analysis (LICA) is a multi-modal data fusion method, which can comprehensively and flexibly use independent component analysis to fuse and analyze multi-modal data, allow each modal group to have different units, signal-to-noise ratio, etc., and can automatically determine the optimal weight of each mode in the group, so as to make full use of the interactive information between modes, it has been widely used in the study of brain diseases. This paper reviews the research progress of MRI in the pathological mechanism, clinical diagnosis and classification of neuropsychiatric diseases.
[Keywords] linked independent component analysis;Alzheimer's disease;Parkinson's disease;depression;schizophrenia;magnetic resonance imaging;data fusion

HU Bing   TAN Xuanyu   LIU Wanqing   LI Danyang   ZHANG Qing*  

Department of Radiology, Zhongshan Hospital Affiliated to Dalian University, Dalian 116001, China

Zhang Q, E-mail: zhangqingsmile@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Scientific Research Fund of Liaoning Provincial Department of Education (No. jyt-dldxfw202006).
Received  2021-09-08
Accepted  2022-02-14
DOI: 10.12015/issn.1674-8034.2022.03.032
Cite this article as: Hu B, Tan XY, Liu WQ, et al. Research progress of multimodal MRI of neuropsychiatric diseases based on linked independent component analysis[J]. Chin J Magn Reson Imaging, 2022, 13(3): 129-133. DOI:10.12015/issn.1674-8034.2022.03.032.

[1]
Groves AR, Beckmann CF, Smith SM, et al. Linked independent component analysis for multimodal data fusion[J]. Neuroimage, 2011, 54(3): 2198-217. DOI: 10.1016/j.neuroimage.2010.09.073.
[2]
Varoquaux G, Sadaghiani S, Pinel P, et al. A group model for stable multi-subject ICA on fMRI datasets[J]. Neuroimage, 2010, 51(1): 288-299. DOI: 10.1016/j.neuroimage.2010.02.010.
[3]
Yao LL, Fan Z. Machine learning model for early diagnosisof Alzheimer'sdisease[J]. Chin J Magn Reson Imaging, 2021, 12(6): 78-82. DOI: 10.12015/issn.1674-8034.2021.06.015.
[4]
Kincses ZT, Hořínek D, Szabó N, et al. The pattern of diffusion parameter changes in Alzheimer's disease, identified by means of linked independent component analysis[J]. J Alzheimers Dis, 2013, 36(1): 119-128. DOI: 10.3233/JAD-122431.
[5]
Alves GS, Oertel Knöchel V, Knöchel C, et al. Integrating retrogenesis theory to Alzheimer's disease pathology: insight from DTI-TBSS investigation of the white matter microstructural integrity[J]. Biomed Res Int, 2015, 2015: 291658. DOI: 10.1155/2015/291658.
[6]
Canty AJ, Jackson JS, Huang L, et al. In vivo imaging of injured cortical axons reveals a rapid onset form of Wallerian degeneration[J]. BMC Biol, 2020, 18(1): 170. DOI: 10.1186/s12915-020-00869-2.
[7]
Doan NT, Engvig A, Persson K, et al. Dissociable diffusion MRI patterns of white matter microstructure and connectivity in Alzheimer's disease spectrum[J]. Sci Rep, 2017, 7: 45131. DOI: 10.1038/srep45131.
[8]
Cremers LGM, Wolters FJ, de Groot M, et al. Structural disconnectivity and the risk of dementia in the general population[J]. Neurology, 2020, 95(11): e1528-e1537. DOI: 10.1212/WNL.0000000000010231.
[9]
Doan NT, Engvig A, Zaske K, et al. Distinguishing early and late brain aging from the Alzheimer's disease spectrum: consistent morphological patterns across independent samples[J]. Neuroimage, 2017, 158: 282-295. DOI: 10.1016/j.neuroimage.2017.06.070.
[10]
Vidal-Pineiro D, Parker N, Shin J, et al. Cellular correlates of cortical thinning throughout the lifespan[J]. Sci Rep, 2020, 10(1): 21803. DOI: 10.1038/s41598-020-78471-3.
[11]
Fjell AM, McEvoy L, Holland D, et al. Brain changes in older adults at very low risk for Alzheimer's disease[J]. J Neurosci, 2013, 33(19): 8237-8242. DOI: 10.1523/JNEUROSCI.5506-12.2013.
[12]
Feng Q, Bai Y, Chen HL, et al. Application of DTI and fMRI in the network connection of the pedunculopontine nucleus in Parkinson disease[J]. Chin J Magn Reson Imaging, 2021, 12(5): 96-98, 106. DOI: 10.12015/issn.1674-8034.2021.05.023.
[13]
Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment[J]. Nat Rev Dis Primers, 2021, 7(1): 47. DOI: 10.1038/s41572-021-00280-3.
[14]
Klein JC, Rolinski M, Griffanti L, et al. Cortical structural involvement and cognitive dysfunction in early Parkinson's disease[J]. NMR Biomed, 2018, 31(4): e3900. DOI: 10.1002/nbm.3900.
[15]
Andica C, Kamagata K, Hatano T, et al. Neurocognitive and psychiatric disorders-related axonal degeneration in Parkinson's disease[J]. J Neurosci Res, 2020, 98(5): 936-949. DOI: 10.1002/jnr.24584.
[16]
Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. Neuroimage, 2012, 61(4): 1000-1016. DOI: 10.1016/j.neuroimage.2012.03.072.
[17]
Kamagata K, Motoi Y, Abe O, et al. White matter alteration of the cingulum in Parkinson disease with and without dementia: evaluation by diffusion tensor tract-specific analysis[J]. AJNR Am J Neuroradiol, 2012, 33(5): 890-895. DOI: 10.3174/ajnr.A2860.
[18]
Hashimoto M, Watanabe K, Miyoshi K, et al. Multiplatform metabolomic analysis of the R6/2 mouse model of Huntington's disease[J]. FEBS Open Bio, 2021, 2021, 11(10): 2807-2818. DOI: 10.1002/2211-5463.13285.
[19]
Garcia-Gorro C, Llera A, Martinez-Horta S, et al. Specific patterns of brain alterations underlie distinct clinical profiles in Huntington's disease[J]. Neuroimage Clin, 2019, 23: 101900. DOI: 10.1016/j.nicl.2019.101900.
[20]
Kim JI, Long JD, Mills JA, et al. Multivariate clustering of progression profiles reveals different depression patterns in prodromal Huntington disease[J]. Neuropsychology, 2015, 29(6): 949-960. DOI: 10.1037/neu0000199.
[21]
Tu PC, Chen LF, Hsieh JC, et al. Regional cortical thinning in patients with major depressive disorder: a surface-based morphometry study[J]. Psychiatry Res, 2012, 202(3): 206-213. DOI: 10.1016/j.pscychresns.2011.07.011.
[22]
Stout JC, Paulsen JS, Queller S, et al. Neurocognitive signs in prodromal Huntington disease[J]. Neuropsychology, 2011, 25(1): 1-14. DOI: 10.1037/a0020937.
[23]
Keshavan MS, Collin G, Guimond S, et al. Neuroimaging in Schizophrenia[J]. Neuroimaging Clin N Am, 2020, 30(1): 73-83. DOI: 10.1016/j.nic.2019.09.007.
[24]
Gupta CN, Calhoun VD, Rachakonda S, et al. Patterns of Gray Matter Abnormalities in Schizophrenia Based on an International Mega-analysis[J]. Schizophr Bull, 2015, 41(5): 1133-1142. DOI: 10.1093/schbul/sbu177.
[25]
Kelly S, Jahanshad N, Zalesky A, et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group[J] . Mol Psychiatry, 2018, 23(5): 1261-1269. DOI: 10.1038/mp.2017.170.
[26]
Jiang YC, Duan MJ, Li XK, et al. Function-structure coupling: White matter functional magnetic resonance imaging hyper-activation associates with structural integrity reductions in schizophrenia[J]. Hum Brain Mapp, 2021, 42(12): 4022-4034. DOI: 10.1002/hbm.25536.
[27]
Brandt CL, Doan NT, Tønnesen S, et al. Assessing brain structural associations with working-memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis[J]. Neuroimage Clin, 2015, 9: 253-263. DOI: 10.1016/j.nicl.2015.08.010.
[28]
Nemoto K, Voxel-Based Morphometry for Schizophrenia: A Review[J]. Brain Nerve, 2017, 69(5): 513-518. DOI: 10.11477/mf.1416200777.
[29]
Doan NT, Kaufmann T, Bettella F, et al. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders[J]. Neuroimage Clin, 2017, 15: 719-731. DOI: 10.1016/j.nicl.2017.06.014.
[30]
Takayanagi Y, Sasabayashi D, Takahashi T, et al. Reduced Cortical Thickness in Schizophrenia and Schizotypal Disorder[J]. Schizophr Bull, 2020, 46(2): 387-394. DOI: 10.1093/schbul/sbz051.
[31]
Karbasforoushan H, Duffy B, Blackford JU, et al. Processing speed impairment in schizophrenia is mediated by white matter integrity[J]. Psychol Med, 2015, 45(1): 109-120. DOI: 10.1017/S0033291714001111.
[32]
Chen CH, Fiecas M, Gutiérrez ED, et al. Genetic topography of brain morphology[J]. Proc Natl Acad Sci U S A, 2013, 110(42): 17089-17094. DOI: 10.1073/pnas.1308091110.
[33]
Johnson CP, Follmer RL, Oguz I, et al. Brain abnormalities in bipolar disorder detected by quantitative T1ρ mappin[J]. Mol Psychiatry, 2015, 20(2): 201-206. DOI: 10.1038/mp.2014.157.
[34]
Moberget T, Doan NT, Alnæs D, et al. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls[J]. Mol Psychiatry, 2018, 23(6): 1512-1520. DOI: 10.1038/mp.2017.106.
[35]
Watson TC, Becker N, Apps R, et al. Back to front: cerebellar connections and interactions with the prefrontal cortex[J]. Front Syst Neurosci, 2014, 8: 4. DOI: 10.3389/fnsys.2014.00004.
[36]
Yang KS, Liu XX, Bai Y, et al. Advances in repetitive transcranial magnetic stimulation and magnetic resonance imaging in depression[J]. Chin J Magn Reson Imaging, 2021, 12(7): 90-93. DOI: 10.12015/issn.1674-8034.2021.07.021.
[37]
Maglanoc LA, Kaufmann T, Jonassen R, et al. Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis[J]. Hum Brain Mapp, 2020, 41(1): 241-255. DOI: 10.1002/hbm.24802.
[38]
Fjell AM, Grydeland H, Krogsrud SK, et al. Development and aging of cortical thickness correspond to genetic organization patterns[J]. Proc Natl Acad Sci U S A, 2015, 112(50): 15462-15467. DOI: 10.1073/pnas.1508831112.
[39]
Mu JP, Cheng C, Mei L, et al. Gender difference of gray and white matter surface area in major depressive disorder[J]. Chin J Magn Reson Imaging, 2021, 12(1): 21-26, 37. DOI: 10.12015/issn.1674-8034.2021.01.005.
[40]
Sexton CE, Walhovd KB, Storsve AB, et al. Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study[J]. J Neurosci, 2014, 34(46): 15425-15436. DOI: 10.1523/JNEUROSCI.0203-14.2014.
[41]
Mowinckel AM, Espeseth T, Westlye LT. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults[J]. Neuroimage, 2012, 63(3): 1364-1373. DOI: 10.1016/j.neuroimage.2012.08.004.
[42]
Weissman-Fogel I, Moayedi M, Taylor KS, et al. Cognitive and default-mode resting state networks: do male and female brains "rest" differently?[J]. Hum Brain Mapp, 2010, 31(11): 1713-1726. DOI: 10.1002/hbm.20968.
[43]
Ritchie SJ, Cox SR, Shen X, et al. Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants[J]. Cereb Cortex, 2018, 28(8): 2959-2975. DOI: 10.1093/cercor/bhy109.

PREV MRI research progress of subjective cognitive decline
NEXT Research progress of cognitive impairment and neuroimaging in patients with spinal cord injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn