Share this content in WeChat
MRI research progress of subjective cognitive decline
LAI Ziyan  ZHANG Qingping  LAI Yinqi  LIANG Lingyan  DENG Demao 

Cite this article as: Lai ZY, Zhang QP, Lai YQ, et al. MRI research progress of subjective cognitive decline[J]. Chin J Magn Reson Imaging, 2022, 13(3): 126-128, 142. DOI:10.12015/issn.1674-8034.2022.03.031.

[Abstract] Subjective cognitive decline (SCD) is the earliest symptom of Alzheimer's disease with a high incidence. Due to the lack of objectively quantified diagnostic gold standard, the diagnosis of SCD is mainly through clinical evaluation, which is prone to misdiagnosis and delayed treatment. This article reviewed the application of structural magnetic resonance, functional magnetic resonance, diffusion tensor imaging, and arterial spin labeling in the brain structure and function of patients with SCD. The dynamic progression trend of SCD was confirmed by multimodal MRI, providing more information for the diagnosis of SCD, the assessment of the severity of cognitive decline and the prognosis of SCD.
[Keywords] subjective cognitive decline;Alzheimer disease;neuroimaging;structural magnetic resonance imaging;functional magnetic resonance imaging;diffusion tensor imaging

LAI Ziyan1   ZHANG Qingping1   LAI Yinqi1   LIANG Lingyan2   DENG Demao2*  

1 Graduate School of Guangxi University of Chinese Medicine, Nanning 530000, China

2 Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China

Deng DM, E-mail:

Conflicts of interest   None.

Received  2021-11-03
Accepted  2022-02-18
DOI: 10.12015/issn.1674-8034.2022.03.031
Cite this article as: Lai ZY, Zhang QP, Lai YQ, et al. MRI research progress of subjective cognitive decline[J]. Chin J Magn Reson Imaging, 2022, 13(3): 126-128, 142.DOI:10.12015/issn.1674-8034.2022.03.031

Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(6): 844-852. DOI: 10.1016/j.jalz.2014.01.001.
Lin Y, Shan PY, Jiang WJ, et al. Subjective cognitive decline: preclinical manifestation of Alzheimer's disease[J]. Neurol Sci, 2019, 40(1): 41-49. DOI: 10.1007/s10072-018-3620-y.
Jessen F, Amariglio RE, Buckley RF, et al. The characterisation of subjective cognitive decline[J]. Lancet Neurol, 2020, 19(3): 271-278. DOI: 10.1016/S1474-4422(19)30368-0.
Liang LY, Yuan YM, Wei YC, et al. Recurrent and concurrent patterns of regional BOLD dynamics and functional connectivity dynamics in cognitive decline[J]. Alzheimers Res Ther, 2021, 13(1): 28. DOI: 10.1186/s13195-020-00764-6.
Cheng CH, Wang PN, Mao HF, et al. Subjective cognitive decline detected by the oscillatory connectivity in the default mode network: a magnetoencephalographic study[J]. Aging (Albany NY), 2020, 12(4): 3911-3925. DOI: 10.18632/aging.102859.
Chen Q, Qing Z, Jin JX, et al. Ego- and allo-network disconnection underlying spatial disorientation in subjective cognitive decline[J]. Cortex, 2021, 137: 35-48. DOI: 10.1016/j.cortex.2020.12.022.
van Harten AC, Mielke MM, Swenson-Dravis DM, et al. Subjective cognitive decline and risk of MCI: the Mayo Clinic Study of Aging[J]. Neurology, 2018, 91(4): e300-e312. DOI: 10.1212/WNL.0000000000005863.
Reisberg B, Shulman MB, Torossian C, et al. Outcome over seven years of healthy adults with and without subjective cognitive impairment[J]. Alzheimers Dement, 2010, 6(1): 11-24. DOI: 10.1016/j.jalz.2009.10.002.
Mitchell AJ, Beaumont H, Ferguson D, et al. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis[J]. Acta Psychiatr Scand, 2014, 130(6): 439-451. DOI: 10.1111/acps.12336.
Wolfsgruber S, Polcher A, Koppara A, et al. Cerebrospinal fluid biomarkers and clinical progression in patients with subjective cognitive decline and mild cognitive impairment[J]. J Alzheimers Dis, 2017, 58(3): 939-950. DOI: 10.3233/JAD-161252.
Chen Y, Wei YC, Duan GX, et al. Clinical and neuroimaging advances in subjective cognitive decline [J]. J Clin Radiol, 2020, 39(5): 1028-1031. DOI: 10.13437/j.cnki.jcr.2020.05.041.
Lim EY, Shim YS, Hong YJ, et al. Different cortical thinning patterns depending on their prognosis in individuals with subjective cognitive decline[J]. Dement Neurocogn Disord, 2019, 18(4): 113-121. DOI: 10.12779/dnd.2019.18.4.113.
Diaz-Galvan P, Ferreira D, Cedres N, et al. Comparing different approaches for operationalizing subjective cognitive decline: impact on syndromic and biomarker profiles[J]. Sci Rep, 2021, 11(1): 4356. DOI: 10.1038/s41598-021-83428-1.
Sun Y, Wang XN, Wang YS, et al. Anxiety correlates with cortical surface area in subjective cognitive decline: APOE ε4 carriers versus APOE ε4 non-carriers[J]. Alzheimers Res Ther, 2019, 11(1): 50. DOI: 10.1186/s13195-019-0505-0.
Sánchez-Benavides G, Grau-Rivera O, Suárez-Calvet M, et al. Brain and cognitive correlates of subjective cognitive decline-plus features in a population-based cohort[J]. Alzheimers Res Ther, 2018, 10(1): 123. DOI: 10.1186/s13195-018-0449-9.
Pini L, Wennberg AM. Structural imaging outcomes in subjective cognitive decline: community vs. clinical-based samples[J]. Exp Gerontol, 2021, 145: 111216. DOI: 10.1016/j.exger.2020.111216.
Zhao WN, Wang XT, Yin CH, et al. Trajectories of the hippocampal subfields atrophy in the Alzheimer's disease: a structural imaging study[J]. Front Neuroinform, 2019, 13: 13. DOI: 10.3389/fninf.2019.00013.
Scheef L, Grothe MJ, Koppara A, et al. Subregional volume reduction of the cholinergic forebrain in subjective cognitive decline (SCD)[J]. Neuroimage Clin, 2019, 21: 101612. DOI: 10.1016/j.nicl.2018.101612.
Herdick M, Dyrba M, Fritz HJ, et al. Multimodal MRI analysis of basal forebrain structure and function across the Alzheimer's disease spectrum[J]. Neuroimage Clin, 2020, 28: 102495. DOI: 10.1016/j.nicl.2020.102495.
Verfaillie SCJ, Slot RER, Dicks E, et al. A more randomly organized grey matter network is associated with deteriorating language and global cognition in individuals with subjective cognitive decline[J]. Hum Brain Mapp, 2018, 39(8): 3143-3151. DOI: 10.1002/hbm.24065.
Tijms BM, Ten Kate M, Gouw AA, et al. Gray matter networks and clinical progression in subjects with predementia Alzheimer's disease[J]. Neurobiol Aging, 2018, 61: 75-81. DOI: 10.1016/j.neurobiolaging.2017.09.011.
Pelkmans W, Ossenkoppele R, Dicks E, et al. Tau-related grey matter network breakdown across the Alzheimer's disease continuum[J]. Alzheimers Res Ther, 2021, 13(1): 138. DOI: 10.1186/s13195-021-00876-7.
Ten Kate M, Visser PJ, Bakardjian H, et al. Gray matter network disruptions and regional amyloid beta in cognitively normal adults[J]. Front Aging Neurosci, 2018, 10: 67. DOI: 10.3389/fnagi.2018.00067.
Fu ZR, Zhao MY, He YR, et al. Divergent connectivity changes in gray matter structural covariance networks in subjective cognitive decline, amnestic mild cognitive impairment, and Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 686598. DOI: 10.3389/fnagi.2021.686598.
Amaefule CO, Dyrba M, Wolfsgruber S, et al. Association between composite scores of domain-specific cognitive functions and regional patterns of atrophy and functional connectivity in the Alzheimer's disease spectrum[J]. Neuroimage Clin, 2021, 29: 102533. DOI: 10.1016/j.nicl.2020.102533.
Wang SY, Rao J, Yue YY, et al. Altered frequency-dependent brain activation and white matter integrity associated with cognition in characterizing preclinical Alzheimer's disease stages[J]. Front Hum Neurosci, 2021, 15: 625232. DOI: 10.3389/fnhum.2021.625232.
Viviano RP, Hayes JM, Pruitt PJ, et al. Aberrant memory system connectivity and working memory performance in subjective cognitive decline[J]. Neuroimage, 2019, 185: 556-564. DOI: 10.1016/j.neuroimage.2018.10.015.
Wang TL, Zhao XF, Wu Y, et al. The study on the combined regional homogeneity and functional connectivity of resting-state magnetic resonance in patients with subjective cognitive decline[J]. Chin J Geriatr, 2021, 40(1): 72-75. DOI: 10.3760/cma.j.issn.0254-9026.2021.01.010.
Dillen KNH, Jacobs HIL, Kukolja J, et al. Functional disintegration of the default mode network in prodromal Alzheimer's disease[J]. J Alzheimers Dis, 2017, 59(1): 169-187. DOI: 10.3233/JAD-161120.
Chen HF, Sheng XN, Luo CM, et al. The compensatory phenomenon of the functional connectome related to pathological biomarkers in individuals with subjective cognitive decline[J]. Transl Neurodegener, 2020, 9(1): 21. DOI: 10.1186/s40035-020-00201-6.
Xue C, Qi WZ, Yuan QQ, et al. Disrupted dynamic functional connectivity in distinguishing subjective cognitive decline and amnestic mild cognitive impairment based on the triple-network model[J]. Front Aging Neurosci, 2021, 13: 711009. DOI: 10.3389/fnagi.2021.711009.
Dong GZ, Yang L, Li CR, et al. Dynamic network connectivity predicts subjective cognitive decline: the Sino-Longitudinal Cognitive impairment and dementia study[J]. Brain Imaging Behav, 2020, 14(6): 2692-2707. DOI: 10.1007/s11682-019-00220-6.
Zhang XY. Study on episodic memory and working memory of subjective cognitive impairment[D]. Chongqing: Southwest University, 2019.
Hayes JM, Tang LF, Viviano RP, et al. Subjective memory complaints are associated with brain activation supporting successful memory encoding[J]. Neurobiol Aging, 2017, 60: 71-80. DOI: 10.1016/j.neurobiolaging.2017.08.015.
Zhang YY, du WY, Yin YY, et al. Impaired cerebral vascular and metabolic responses to parametric N-back tasks in subjective cognitive decline[J]. J Cereb Blood Flow Metab, 2021, 41(10): 2743-2755. DOI: 10.1177/0271678X211012153.
Wu SC, Lu JM, Wang JX, et al. The study of functional MRI on neuronal activity of primary olfactory cortex in patients with subjective cognitive decline[J]. Chin J Radiol, 2019, 53(8): 678-684. DOI: 10.3760/cma.j.issn.1005?1201.2019.08.004.
Brueggen K, Dyrba M, Cardenas-Blanco A, et al. Structural integrity in subjective cognitive decline, mild cognitive impairment and Alzheimer's disease based on multicenter diffusion tensor imaging[J]. J Neurol, 2019, 266(10): 2465-2474. DOI: 10.1007/s00415-019-09429-3.
Fan LY, Lai YM, Chen TF, et al. Diminution of context association memory structure in subjects with subjective cognitive decline[J]. Hum Brain Mapp, 2018, 39(6): 2549-2562. DOI: 10.1002/hbm.24022.
Ohlhauser L, Parker AF, Smart CM, et al. White matter and its relationship with cognition in subjective cognitive decline[J]. Alzheimers Dement (Amst), 2019, 11: 28-35. DOI: 10.1016/j.dadm.2018.10.008.
Wei YC, Hsu CH, Huang WY, et al. White matter integrity underlies the physical-cognitive correlations in subjective cognitive decline[J]. Front Aging Neurosci, 2021, 13: 700764. DOI: 10.3389/fnagi.2021.700764.
Wen QT, Risacher SL, Xie LH, et al. Tau-related white-matter alterations along spatially selective pathways[J]. Neuroimage, 2021, 226: 117560. DOI: 10.1016/j.neuroimage.2020.117560.
Cedres N, Diaz-Galvan P, Diaz-Flores L, et al. The interplay between gray matter and white matter neurodegeneration in subjective cognitive decline[J]. Aging (Albany NY), 2021, 13(16): 19963-19977. DOI: 10.18632/aging.203467.
Fogel H, Levy-Lamdan O, Zifman N, et al. Brain network integrity changes in subjective cognitive decline: a possible physiological biomarker of dementia[J]. Front Neurol, 2021, 12: 699014. DOI: 10.3389/fneur.2021.699014.
Teipel SJ, Kuper-Smith JO, Bartels C, et al. Multicenter tract-based analysis of microstructural lesions within the Alzheimer's disease spectrum: association with amyloid pathology and diagnostic usefulness[J]. J Alzheimers Dis, 2019, 72(2): 455-465. DOI: 10.3233/JAD-190446.
Li DX, Xu C, Zeng XC, et al. Arterial spin labeling quantitative analysis of cerebral blood flow in different stages of Alzheimer disease[J]. Chin J Med Imaging Technol, 2021, 37(2): 194-199. DOI: 10.13929/j.issn.1003-3289.2021.02.008.
Yang ZX, Rong Y, Cao Z, et al. Microstructural and cerebral blood flow abnormalities in subjective cognitive decline plus: diffusional kurtosis imaging and three-dimensional arterial spin labeling study[J]. Front Aging Neurosci, 2021, 13: 625843. DOI: 10.3389/fnagi.2021.625843.
Hays CC, Zlatar ZZ, Campbell L, et al. Subjective cognitive decline modifies the relationship between cerebral blood flow and memory function in cognitively normal older adults[J]. J Int Neuropsychol Soc, 2018, 24(3): 213-223. DOI: 10.1017/S135561771700087X.
Leeuwis AE, Benedictus MR, Kuijer JPA, et al. Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer's disease[J]. Alzheimers Dement, 2017, 13(5): 531-540. DOI: 10.1016/j.jalz.2016.08.013.

PREV Research progress of resting-state functional magnetic resonance imaging in TCM treatment of mild cognitive impairment
NEXT Research progress of multimodal MRI of neuropsychiatric diseases based on linked independent component analysis

Tel & Fax: +8610-67113815    E-mail: