Share:
Share this content in WeChat
X
Reviews
Progress of magnetic resonance vessel wall imaging in the evaluation of vulnerability and treatment efficacy of intracranial atherosclerosis plaque
LIU Cong  SONG Yan 

Cite this article as: Liu C, Song Y. Progress of magnetic resonance vessel wall imaging in the evaluation of vulnerability and treatment efficacy of intracranial atherosclerosis plaque[J]. Chin J Magn Reson Imaging, 2022, 13(3): 118-121. DOI:10.12015/issn.1674-8034.2022.03.029.


[Abstract] Intracranial atherosclerosis (ICAS) is closely associated with ischemic stroke. Compared with conventional arterial luminal imaging, magnetic resonance vessel wall imaging (VWI), a kind of new non-invasive imaging technique, could evaluate the plaque burden and vulnerability as well as the luminal stenosis. It could help to predict the risk of ischemic cerebrovascular disease. In recent years, more and more studies about the evaluation of ICAS with IVW have been carried out. Some of them search for the clinical risk factors of vulnerable intracranial atherosclerotic plaque, trying to prevent the development of vulnerable plaque by controlling these risk factors; some researchers apply VWI to evaluate the efficacy of drugs or interventional therapy for ICAS, exploring more effective treatment schemes. All these efforts will help to further promote the prevention of ischemic cerebrovascular disease. In this review, we summarized the application of VWI in the evaluation of intracranial atherosclerosis plaque vulnerability, risk factors and prognosis.
[Keywords] magnetic resonance imaging;intracranial atherosclerosis;risk factors;prognosis

LIU Cong1, 2   SONG Yan1, 2*  

1 Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China

2 Graduate School, Peking Union Medical College, Beijing 100730, China

Song Y, E-mail: firesong@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Capital Health Research and Development of Special (No. 2020-2-4052).
Received  2021-11-30
Accepted  2022-03-02
DOI: 10.12015/issn.1674-8034.2022.03.029
Cite this article as: Liu C, Song Y. Progress of magnetic resonance vessel wall imaging in the evaluation of vulnerability and treatment efficacy of intracranial atherosclerosis plaque[J]. Chin J Magn Reson Imaging, 2022, 13(3): 118-121. DOI:10.12015/issn.1674-8034.2022.03.029.

[1]
Zhang DF, Chen YC, Chen H, et al. A High-Resolution MRI Study of Relationship between Remodeling Patterns and Ischemic Stroke in Patients with Atherosclerotic Middle Cerebral Artery Stenosis[J]. Front Aging Neurosci, 2017, 9: 140. DOI: 10.3389/fnagi.2017.00140.
[2]
Banerjee C, Chimowitz MI. Stroke Caused by Atherosclerosis of the Major Intracranial Arteries[J]. Circ Res, 2017, 120(3): 502-513. DOI: 10.1161/CIRCRESAHA.116.308441.
[3]
Yang WJ, Wong KS, Chen XY. Intracranial Atherosclerosis: From Microscopy to High-Resolution Magnetic Resonance Imaging[J]. J Stroke, 2017, 19(3): 249-260. DOI: 10.5853/jos.2016.01956.
[4]
Harteveld AA, Denswil NP, Siero JC, et al. Quantitative Intracranial Atherosclerotic Plaque Characterization at 7T MRI: An Ex Vivo Study with Histologic Validation[J]. AJNR Am J Neuroradiol, 2016, 37(5): 802-810. DOI: 10.3174/ajnr.A4628.
[5]
Zhu C, Tian X, Degnan AJ, et al. Clinical Significance of Intraplaque Hemorrhage in Low- and High-Grade Basilar Artery Stenosis on High-Resolution MRI[J]. AJNR Am J Neuroradiol, 2018, 39(7): 1286-1292. DOI: 10.3174/ajnr.A5676.
[6]
Mura M, Della Schiava N, Long A, et al. Carotid intraplaque haemorrhage: pathogenesis, histological classification, imaging methods and clinical value[J]. Ann Transl Med, 2020, 8(19): 1273. DOI: 10.21037/atm-20-1974.
[7]
Denswil NP, van der Wal AC, Ritz K, et al. Atherosclerosis in the circle of Willis: Spatial differences in composition and in distribution of plaques[J]. Atherosclerosis, 2016, 251: 78-84. DOI: 10.1016/j.atherosclerosis.2016.05.047.
[8]
Xu WH, Li ML, Gao S, et al. Middle cerebral artery intraplaque hemorrhage: prevalence and clinical relevance[J]. Ann Neurol, 2012, 71(2): 195-198. DOI: 10.1002/ana.22626.
[9]
Yu JH, Kwak HS, Chung GH, et al. Association of Intraplaque Hemorrhage and Acute Infarction in Patients With Basilar Artery Plaque[J]. Stroke, 2015, 46(10): 2768-2772. DOI: 10.1161/STROKEAHA.115.009412.
[10]
van Gils MJ, Homburg PJ, Rozie S, et al. Evolution of atherosclerotic carotid plaque morphology: do ulcerated plaques heal? A serial multidetector CT angiography study[J]. Cerebrovasc Dis, 2011, 31(3): 263-270. DOI: 10.1159/000322152.
[11]
Chung GH, Kwak HS, Hwang SB, et al. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis[J]. Eur J Radiol, 2012, 81(12): 4069-4074. DOI: 10.1016/j.ejrad.2012.07.001.
[12]
Zhao DL, Deng G, Xie B, et al. High-resolution MRI of the vessel wall in patients with symptomatic atherosclerotic stenosis of the middle cerebral artery[J]. J Clin Neurosci, 2015, 22(4): 700-704. DOI: 10.1016/j.jocn.2014.10.018.
[13]
Kwee RM, Qiao Y, Liu L, et al. Temporal course and implications of intracranial atherosclerotic plaque enhancement on high-resolution vessel wall MRI[J]. Neuroradiology, 2019, 61(6): 651-657. DOI: 10.1007/s00234-019-02190-4.
[14]
Gupta A, Baradaran H, Al-Dasuqi K, et al. Gadolinium Enhancement in Intracranial Atherosclerotic Plaque and Ischemic Stroke: A Systematic Review and Meta-Analysis[J]. J Am Heart Assoc, 2016, 5(8). DOI: 10.1161/JAHA.116.003816.
[15]
Wang M, Wu F, Yang Y, et al. Quantitative assessment of symptomatic intracranial atherosclerosis and lenticulostriate arteries in recent stroke patients using whole-brain high-resolution cardiovascular magnetic resonance imaging[J]. J Cardiovasc Magn Reson, 2018, 20(1): 35. DOI: 10.1186/s12968-018-0465-8.
[16]
Shi Z, Li J, Zhao M, et al. Quantitative Histogram Analysis on Intracranial Atherosclerotic Plaques: A High-Resolution Magnetic Resonance Imaging Study[J]. Stroke, 2020, 51(7): 2161-2169. DOI: 10.1161/STROKEAHA.120.029062.
[17]
Shi MC, Wang SC, Zhou HW, et al. Compensatory remodeling in symptomatic middle cerebral artery atherosclerotic stenosis: a high-resolution MRI and microemboli monitoring study[J]. Neurol Res, 2012, 34(2): 153-158. DOI: 10.1179/1743132811Y.0000000065.
[18]
Ma YH, Leng XY, Dong Y, et al. Risk factors for intracranial atherosclerosis: A systematic review and meta-analysis[J]. Atherosclerosis, 2019, 281: 71-77. DOI: 10.1016/j.atherosclerosis.2018.12.015.
[19]
Huang J, Jiao S, Song Y, et al. Association between type 2 diabetes mellitus, especially recently uncontrolled glycemia, and intracranial plaque characteristics: A high-resolution magnetic resonance imaging study[J]. J Diabetes Investig, 2020, 11(5): 1278-1284. DOI: 10.1111/jdi.13239.
[20]
Li X, Sun B, Wang L, et al. Association of Type 2 Diabetes Mellitus and Glycemic Control With Intracranial Plaque Characteristics in Patients With Acute Ischemic Stroke[J]. J Magn Reson Imaging, 2021, 54(2): 655-666. DOI: 10.1002/jmri.27614.
[21]
Jiao S, Huang J, Chen Y, et al. Impacts of Glycemic Control on Intracranial Plaque in Patients with Type 2 Diabetes Mellitus: A Vessel Wall MRI Study[J]. AJNR Am J Neuroradiol, 2021, 42(1): 75-81. DOI: 10.3174/ajnr.A6878.
[22]
Liu W, Huang X, Liu X, et al. Uncontrolled hypertension associates with subclinical cerebrovascular health globally: a multimodal imaging study[J]. Eur Radiol, 2021, 31(4): 2233-2241. DOI: 10.1007/s00330-020-07218-5.
[23]
Song X, Zhao X, Liebeskind DS, et al. Associations between systemic blood pressure parameters and intraplaque hemorrhage in symptomatic intracranial atherosclerosis: a high-resolution MRI-based study[J]. Hypertens Res, 2020, 43(7): 688-695. DOI: 10.1038/s41440-020-0411-7.
[24]
Park JH, Hong KS, Lee EJ, et al. High levels of apolipoprotein B/AI ratio are associated with intracranial atherosclerotic stenosis[J]. Stroke, 2011, 42(11): 3040-3046. DOI: 10.1161/STROKEAHA.111.620104.
[25]
Chung JW, Cha J, Lee MJ, et al. Intensive Statin Treatment in Acute Ischaemic Stroke Patients with Intracranial Atherosclerosis: a High-Resolution Magnetic Resonance Imaging study (STAMINA-MRI Study)[J]. J Neurol Neurosurg Psychiatry, 2020, 91(2): 204-211. DOI: 10.1136/jnnp-2019-320893.
[26]
Kim JM, Park KY, Shin DW, et al. Relation of serum homocysteine levels to cerebral artery calcification and atherosclerosis[J]. Atherosclerosis, 2016, 254: 200-204. DOI: 10.1016/j.atherosclerosis.2016.10.023.
[27]
Dai W, Li D, Cai Y, et al. Association between homocysteine and multivascular atherosclerosis in stroke-related vascular beds determined by three-dimensional magnetic resonance vessel wall imaging[J]. J Clin Neurosci, 2019, 70: 72-78. DOI: 10.1016/j.jocn.2019.08.076.
[28]
Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation[J]. Diabet Med, 2006, 23(5): 469-480. DOI: 10.1111/j.1464-5491.2006.01858.x.
[29]
Ji R, Pan Y, Yan H, et al. Current smoking is associated with extracranial carotid atherosclerotic stenosis but not with intracranial large artery disease[J]. BMC Neurol, 2017, 17(1): 120. DOI: 10.1186/s12883-017-0873-7.
[30]
Chung JW, Hwang J, Lee MJ, et al. Previous Statin Use and High-Resolution Magnetic Resonance Imaging Characteristics of Intracranial Atherosclerotic Plaque: The Intensive Statin Treatment in Acute Ischemic Stroke Patients With Intracranial Atherosclerosis Study[J]. Stroke, 2016, 47(7): 1789-1796. DOI: 10.1161/STROKEAHA.116.013495.
[31]
Strang AC, van Wijk DF, Mutsaerts HJ, et al. Guideline treatment results in regression of atherosclerosis in type 2 diabetes mellitus[J]. Diab Vasc Dis Res, 2015, 12(2): 126-132. DOI: 10.1177/1479164114559511.
[32]
Ma N, Xu Z, Lyu J, et al. Association of Perforator Stroke After Basilar Artery Stenting With Negative Remodeling[J]. Stroke, 2019, 50(3): 745-749. DOI: 10.1161/STROKEAHA.118.023838.
[33]
Power S, Matouk C, Casaubon LK, et al. Vessel Wall Magnetic Resonance Imaging in Acute Ischemic Stroke[J]. Stroke, 2014, 45(8): 2330-2334. DOI: 10.1161/strokeaha.114.005618.
[34]
Li Y, Turan TN, Chaudry I, et al. High-Resolution Magnetic Resonance Imaging Evidence for Intracranial Vessel Wall Inflammation Following Endovascular Thrombectomy[J]. J Stroke Cerebrovasc Dis, 2017, 26(5): e96-e98. DOI: 10.1016/j.jstrokecerebrovasdis.2017.02.006.

PREV Research progress of deep learning in glioblastoma
NEXT Research progress of resting-state functional magnetic resonance imaging in TCM treatment of mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn