Share:
Share this content in WeChat
X
Reviews
Research progress of deep learning in glioblastoma
ZHENG Fei  CHEN Xuzhu 

Cite this article as: Zheng F, Chen XZ. Research progress of deep learning in glioblastoma[J]. Chin J Magn Reson Imaging, 2022, 13(3): 115-117. DOI:10.12015/issn.1674-8034.2022.03.028.


[Abstract] Deep learning, a method of artificial intelligence, has been used for glioblastoma (GBM) in recent years. This method is mainly used in the clinical, pathological, and methodological aspects of GBM. The clinical usage includes the prediction of patient prognosis, differential diagnosis, and tumor radiotherapy. The pathological studies includes the prediction of tumor molecular and genetic expression status, and the identification of pathological tissue. As for the method itself, the most frequently used algorithm is convolutional neural network. Other studies included the comparison among different deep learning models and establishment of deep learning models based on different MRI sequences. This paper is to review the application of deep learning in GBM in detail.
[Keywords] glioblastoma;artificial intelligence;deep learning;magnetic resonance imaging;machine learning

ZHENG Fei   CHEN Xuzhu*  

Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

CHEN XZ, E-mail: radiology888@aliyun.com

Conflicts of interest   None.

Received  2021-07-26
Accepted  2022-02-14
DOI: 10.12015/issn.1674-8034.2022.03.028
Cite this article as: Zheng F, Chen XZ. Research progress of deep learning in glioblastoma[J]. Chin J Magn Reson Imaging, 2022, 13(3): 115-117.DOI:10.12015/issn.1674-8034.2022.03.028

[1]
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. DOI: 10.1001/jama.2016.17216.
[2]
Thakur SP, Doshi J, Pati S, et al. Skull-stripping of glioblastoma MRI scans using 3D deep learning[J]. Brainlesion, 2019, 11992: 57-68. DOI: 10.1007/978-3-030-46640-4_6.
[3]
Lindner L, Narnhofer D, Weber M, et al. Using synthetic training data for deep learning-based GBM segmentation[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 6724-6729. DOI: 10.1109/EMBC.2019.8856297.
[4]
Windisch P, Weber P, Fürweger C, et al. Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on MRI slices[J]. Neuroradiology, 2020, 62(11): 1515-1518. DOI: 10.1007/s00234-020-02465-1.
[5]
Chang K, Beers AL, Bai HX, et al. Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement[J]. Neuro Oncol, 2019, 21(11): 1412-1422. DOI: 10.1093/neuonc/noz106.
[6]
AlBadawy EA, Saha A, Mazurowski MA. Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing[J]. Med Phys, 2018, 45(3): 1150-1158. DOI: 10.1002/mp.12752.
[7]
Madhugiri VS, Moiyadi AV, Shetty P, et al. Analysis of factors associated with long-term survival in patients with glioblastoma[J]. World Neurosurg, 2021, 149: e758-e765. DOI: 10.1016/j.wneu.2021.01.103.
[8]
Lao J, Chen Y, Li ZC, et al. A Deep learning-based radiomics model for prediction of survival in glioblastoma multiforme[J]. Sci Rep, 2017, 7(1): 10353. DOI: 10.1038/s41598-017-10649-8.
[9]
Wong KK, Rostomily R, Wong STC. Prognostic gene discovery in glioblastoma patients using deep learning[J]. Cancers (Basel), 2019, 11(1): 53. DOI: 10.3390/cancers11010053.
[10]
Tang Z, Xu Y, Jiao Z, et al. Pre-operative overall survival time prediction for glioblastoma patients using deep learning on both imaging phenotype and genotype[J]. Med Image Comput Comput Assist Interv, 2019, 11764: 415-422. DOI: 10.1007/978-3-030-32239-7_46.
[11]
Tang Z, Xu Y, Jin L, et al. Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients[J]. IEEE Trans Med Imaging, 2020, 39(6): 2100-2109. DOI: 10.1109/TMI.2020.2964310.
[12]
Hao J, Kim Y, Mallavarapu T, et al. Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data[J]. BMC Med Genomics, 2019, 12(Suppl 10): 189. DOI: 10.1186/s12920-019-0624-2.
[13]
Cepeda S, García-García S, Arrese I, et al. Comparison of intraoperative ultrasound B-mode and strain elastography for the differentiation of glioblastomas from solitary brain metastases. An automated deep learning approach for image analysis[J]. Front Oncol, 2021, 10: 590756. DOI: 10.3389/fonc.2020.590756.
[14]
Shin I, Kim H, Ahn SS, et al. Development and validation of a deep learning-based model to distinguish glioblastoma from solitary brain metastasis using conventional MR images[J]. AJNR Am J Neuroradiol, 2021, 42(5): 838-844. DOI: 10.3174/ajnr.A7003.
[15]
Liu Z, Jiang Z, Meng L, et al. Handcrafted and deep learning-based radiomic models can distinguish GBM from brain metastasis[J]. J Oncol, 2021, 2021: 5518717. DOI: 10.1155/2021/5518717.
[16]
Xia W, Hu B, Li H, et al. Deep learning for automatic differential diagnosis of primary central nervous system lymphoma and glioblastoma: multi-parametric magnetic resonance imaging based convolutional neural network model[J]. J Magn Reson Imaging. 2021, 54(3): 880-887. DOI: 10.1002/jmri.27592.
[17]
Rahmat R, Saednia K, Haji Hosseini Khani MR, et al. Multi-scale segmentation in GBM treatment using diffusion tensor imaging[J]. Comput Biol Med, 2020, 123: 103815. DOI: 10.1016/j.compbiomed.2020.103815.
[18]
Peeken JC, Molina-Romero M, Diehl C, et al. Deep learning derived tumor infiltration maps for personalized target definition in glioblastoma radiotherapy[J]. Radiother Oncol, 2019, 138:166-172. DOI: 10.1016/j.radonc.2019.06.031.
[19]
Ermiş E, Jungo A, Poel R, et al. Fully automated brain resection cavity delineation for radiation target volume definition in glioblastoma patients using deep learning[J]. Radiat Oncol, 2020, 15(1): 100. DOI: 10.1186/s13014-020-01553-z.
[20]
Metz MC, Molina-Romero M, Lipkova J, et al. Predicting glioblastoma recurrence from preoperative MR scans using fractional-anisotropy maps with free-water suppression[J]. Cancers (Basel), 2020, 12(3): 728. DOI: 10.3390/cancers12030728.
[21]
Koike Y, Akino Y, Sumida I, et al. Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy[J]. J Radiat Res, 2020, 61(1): 92-103. DOI: 10.1093/jrr/rrz063.
[22]
Pasquini L, Napolitano A, Tagliente E, et al. Deep learning can differentiate IDH-mutant from IDH-wild GBM[J]. J Pers Med, 2021, 11(4): 290. DOI: 10.3390/jpm11040290.
[23]
Han L, Kamdar MR. MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks[J]. Pac Symp Biocomput, 2018, 23: 331-342.
[24]
Hedyehzadeh M, Maghooli K, MomenGharibvand M, et al. A comparison of the efficiency of using a deep CNN approach with other common regression methods for the prediction of EGFR expression in glioblastoma patients[J]. J Digit Imaging, 2020, 33(2): 391-398. DOI: 10.1007/s10278-019-00290-4.
[25]
Yonekura A, Kawanaka H, Prasath VBS, et al. Automatic disease stage classification of glioblastoma multiforme histopathological images using deep convolutional neural network[J]. Biomed Eng Lett, 2018, 8(3): 321-327. DOI: 10.1007/s13534-018-0077-0.
[26]
Zadeh Shirazi A, McDonnell MD, Fornaciari E, et al. A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma[J]. Br J Cancer, 2021, 125(3): 337-350. DOI: 10.1038/s41416-021-01394-x.
[27]
Pérez-Aliacar M, Doweidar MH, Doblaré M, et al. Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning approach[J]. Comput Biol Med, 2021, 135: 104547. DOI: 10.1016/j.compbiomed.2021.104547.
[28]
Chiu FY, Le NQK, Chen CY. A multiparametric MRI-based radiomics analysis to efficiently classify tumor subregions of glioblastoma: A pilot study in machine learning[J]. J Clin Med, 2021, 10(9): 2030. DOI: 10.3390/jcm10092030.

PREV Highlights of the 107th scientific assembly and annual meeting of Radiological Society of North America: Artificial intelligence
NEXT Progress of magnetic resonance vessel wall imaging in the evaluation of vulnerability and treatment efficacy of intracranial atherosclerosis plaque
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn