Share:
Share this content in WeChat
X
Experience Exchanges
Evaluation of image quality of brain injury in preterm infants by pediatric 3.0 T special magnetic resonance imaging
LIU Ying  HUO Ran  LIU Jianfang  LIAO Yi  LIU Yunfeng  ZHAO Qiang  NING Gang  YUAN Huishu 

Cite this article as: Liu Y, Huo R, Liu JF, et al. Evaluation of image quality of brain injury in preterm infants by pediatric 3.0 T special magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2022, 13(3): 61-65. DOI:10.12015/issn.1674-8034.2022.03.012.


[Abstract] Objective To compare the brain image quality of preterm infants evaluated by 3.0 T pediatric special magnetic resonance and 3.0 T whole-body magnetic resonance, so as to evaluate the application value of 3.0 T pediatric special magnetic resonance in brain imaging of preterm infants.Materials and Methods Brain imaging scanning was performed on 3.0 T pediatric special magnetic resonance and 3.0 T whole-body magnetic resonance respectively. The acquisition sequence included conventional sequence and diffusion weighted imaging (DWI) sequence. The image quality of the two groups of T2 weighted imaging (T2WI) sequence was subjectively scored, and the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) of 3D T1 weighted imaging (T1WI) and ADC value of DWI were measured.Results The subjective score showed that the image quality of 3.0 T pediatric MRI was equivalent to that of 3.0 T whole-body MRI, which met the needs of clinical diagnosis. The SNR of bilateral frontal, parietal, temporal and occipital gray matter, white matter, midbrain and cerebellum were not significantly different from that of whole-body MRI (P>0.05); There was no significant difference of ADC values in bilateral frontal, parietal, temporal and occipital lobes between 3.0 T pediatric MRI and 3.0 T whole-body MRI (P>0.05).Conclusions There is no difference in subjective score and SNR between 3.0 T pediatric special MRI and 3.0 T whole-body MRI, and CNR is equivalent to or better than 3.0 T whole-body MRI, indicating that the new equipment has broad clinical application prospects.
[Keywords] premature infant;brain injury;magnetic resonance imaging;special for pediatrics;diffusion weighted imaging

LIU Ying1   HUO Ran1   LIU Jianfang1   LIAO Yi2   LIU Yunfeng3   ZHAO Qiang1   NING Gang2   YUAN Huishu1*  

1 Department of Radiology, Peking University Third Hospital, Beijing 100191, China

2 Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China

3 Department of pediatrics, Peking University Third Hospital, Beijing 100191, China

Yuan HS, E-mail: huishuy@bjmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS National Key Research and Development Plan "Digital Diagnosis and Treatment Equipment Research and Development" Key Specialty (2017YFC0109005).
Received  2021-08-13
Accepted  2022-03-11
DOI: 10.12015/issn.1674-8034.2022.03.012
Cite this article as: Liu Y, Huo R, Liu JF, et al. Evaluation of image quality of brain injury in preterm infants by pediatric 3.0 T special magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2022, 13(3): 61-65. DOI:10.12015/issn.1674-8034.2022.03.012.

[1]
Ophelders DRMG, Gussenhoven R, Klein L, et al. Preterm brain injury, antenatal triggers, and therapeutics: timing is key[J]. Cells, 2020, 9(8): E1871. DOI: 10.3390/cells9081871.
[2]
Novak CM, Ozen M, Burd I. Perinatal brain injury: mechanisms, prevention, and outcomes[J]. Clin Perinatol, 2018, 45(2): 357-375. DOI: 10.1016/j.clp.2018.01.015.
[3]
Harmony T. Early diagnosis and treatment of infants with prenatal and perinatal risk factors for brain damage at the neurodevelopmental research unit in Mexico[J]. Neuroimage, 2021, 235: 117984. DOI: 10.1016/j.neuroimage.2021.117984.
[4]
Yates N, Gunn AJ, Bennet L, et al. Preventing brain injury in the preterm infant-current controversies and potential therapies[J]. Int J Mol Sci, 2021, 22(4): 1671. DOI: 10.3390/ijms22041671.
[5]
Liu J, Yang YJ, Feng ZC. Interpretation of the expert's consensus on diagnosis, prevention and treatment of brain injury in premature infants in China [J]. Chin J Contemp Pediatr, 2012, 14(12): 885-887.
[6]
Zheng Y, Wang XM. The types of neonatal brain injury and the corresponding main points of imaging examination[J]. J China Clin Med Imaging, 2020, 31(12): 837-840. DOI: 10.12117/jccmi.2020.12.001.
[7]
Wu LP, Zhao X, Fan ZJ. Clinical analysis of intracranial hemorrhage in neonatal hypoxic-ischemic encephalopathy by MR routine craniocerebral sequence combined with SWI[J]. J Med Imaging, 2019, 29(7): 1224-1226.
[8]
Pan ZL, (Lü/Lv/Lu/Lyu) WF, Min H. The early diagnostic value of conventional MRI combined with DWI in premature newborns brain injury[J]. J Med Imaging, 2018, 28(10): 1605-1607, 1614.
[9]
Tocchio S, Kline-Fath B, Kanal E, et al. MRI evaluation and safety in the developing brain[J]. Semin Perinatol, 2015, 39(2): 73-104. DOI: 10.1053/j.semperi.2015.01.002.
[10]
Hillenbrand CM, Reykowski A. MR Imaging of the Newborn: a technical perspective[J]. Magn Reson Imaging Clin N Am, 2012, 20(1): 63-79. DOI: 10.1016/j.mric.2011.10.002.
[11]
Li N, Zheng H, Xu GZ, et al. Simultaneous head and spine MR imaging in children using a dedicated multichannel receiver system at 3T[J]. IEEE Trans Biomed Eng, 2021, 68(12): 3659-3670. DOI: 10.1109/TBME.2021.3082149.
[12]
Hall AS, Young IR, Davies FJ, et al. Advanced MR imaging techniques[M]. London: Martin Dunitz, 1997: 281-289.
[13]
Whitby EH, Paley MN, Smith MF, et al. Low field strength magnetic resonance imaging of the neonatal brain[J]. Arch Dis Child Fetal Neonatal Ed, 2003, 88(3): F203-F208. DOI: 10.1136/fn.88.3.f203.
[14]
Tkach JA, Merhar SL, Kline-Fath BM, et al. MRI in the neonatal ICU: initial experience using a small-footprint 1.5-T system[J]. AJR Am J Roentgenol, 2014, 202(1): W95-W105. DOI: 10.2214/AJR.13.10613.
[15]
Tkach JA, Hillman NH, Jobe AH, et al. An MRI system for imaging neonates in the NICU: initial feasibility study[J]. Pediatr Radiol, 2012, 42(11): 1347-1356. DOI: 10.1007/s00247-012-2444-9.
[16]
O'Regan K, Filan P, Pandit N, et al. Image quality associated with the use of an MR-compatible incubator in neonatal neuroimaging[J]. Br J Radiol, 2012, 85(1012): 363-367. DOI: 10.1259/bjr/66148265.
[17]
Frank J, Al-Ali L. Signal-to-noise ratio of electron micrographs obtained by cross correlation[J]. Nature, 1975, 256(5516): 376-379. DOI: 10.1038/256376a0.
[18]
Lee Y, Wilm BJ, Brunner DO, et al. On the signal-to-noise ratio benefit of spiral acquisition in diffusion MRI[J]. Magn Reson Med, 2021, 85(4): 1924-1937. DOI: 10.1002/mrm.28554.
[19]
Marques JP, Simonis FFJ, Webb AG. Low-field MRI: an MR physics perspective[J]. J Magn Reson Imaging, 2019, 49(6): 1528-1542. DOI: 10.1002/jmri.26637.
[20]
Brunner P, Schneider J, Borradori-Tolsa C, et al. Transient tone anomalies in very preterm infants: association with term-equivalent brain magnetic resonance imaging and neurodevelopment at 18 months[J]. Early Hum Dev, 2020, 143: 104998. DOI: 10.1016/j.earlhumdev.2020.104998.
[21]
Sotardi S, Gollub RL, Bates SV, et al. Voxelwise and regional brain apparent diffusion coefficient changes on MRI from birth to 6 years of age[J]. Radiology, 2021, 298(2): 415-424. DOI: 10.1148/radiol.2020202279.
[22]
Qi L, Zhang J. MRI evaluation of normal fetal posterior fossa structures[J]. Chin J Interv Imaging Ther, 2013, 10(8): 473-476. DOI: 10.13929/j.1672-8475.2013.08.003.
[23]
Lei ZY, Tang WJ, Li K, et al. Application of different b values in normal brain diffusion weighted imaging[J]. Chin Comput Med Imaging, 2009, 15(2): 102-105. DOI: 10.19627/j.cnki.cn31-1700/th.2009.02.002.
[24]
Deng XX, Si JR. Influence of different b value in normal human brain diffusion weighted imaging[J]. Radiol Pract, 2006, 21(5): 523-525. DOI: 10.3969/j.issn.1000-0313.2006.05.026.
[25]
Zhu ZJ, Zheng CY, Liu BG, et al. Effects of different b values on signal intensity and signal-to-noise ratio of fetal brain diffusion weighted images in late pregnancy[J]. J Pract Med, 2015, 38(8): 1280-1282. DOI: 10.3969/j.issn.1006-5725.2015.07.29.

PREV The functional connectivity of default mode network and hippocampus in Alzheimer,s disease: A Meta-analysis based on SDM
NEXT The value of T1 mapping in clinical staging of nasopharyngeal carcinoma and its correlation with EGFR and Ki-67 index
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn