Share:
Share this content in WeChat
X
Technical Article
A comparation analysis between IDEAL-IQ and mDixon Quant techniques in fat quantification of abdomen and vertebrae
LIU Na  ZHANG Haonan  ZHANG Yukun  MIAO Yanwei  SONG Qingwei 

Cite this article as: Liu N, Zhang HN, Zhang YK, et al. A comparation analysis between IDEAL-IQ and mDixon Quant techniques in fat quantification of abdomen and vertebrae[J]. Chin J Magn Reson Imaging, 2022, 13(3): 49-53. DOI:10.12015/issn.1674-8034.2022.03.010.


[Abstract] Objective To explore the differences in the quantitative assessment of fat fraction (FF) of liver, pancreas and lumbar vertebral body on the iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence (IDEAL-IQ) and mDixon Quant sequence on different platforms of 3.0 T MR device.Materials and Methods Prospectively included 36 healthy volunteers (15 males and 21 females; age 24.39±2.28 years), IDEAL-IQ and mDixon Quant sequences were performed on two different platforms of the 3.0 T MR to scan the epigastrium and lumbar vertebral body. Two observers measured the FF values of liver, pancreas, and lumbar (L1-L5) vertebral bodies in all volunteers and performed a comparative analysis between the two sequences.Results The data measured by the two observers were consistently good (intra-class correlation coefficients>0.75). IDEAL-IQ and mDixon Quant sequence showed that, the FF values of liver were 3.74±0.89, 3.69±0.80; FF values of pancreas were 4.66±1.37, 4.63±1.35; FF values of lumbar vertebral body L1 were 32.29±7.98, 32.32±7.85; L2 were 35.08±9.15, 35.08±9.20; L3 were 37.75±9.93, 37.61±9.82; L4 were 37.15±9.82, 37.26±9.84; L5 were 37.79±9.58, 37.72±9.54, there was no significant difference (P>0.05).Conclusions Both IDEAL-IQ and mDixon Quant sequences can quantitatively measure FF values of liver, pancreas, and lumbar vertebral body, its measurements are highly consistent.
[Keywords] lumbar vertebrae;pancreas;liver;fat quantification;magnetic resonance imaging

LIU Na   ZHANG Haonan   ZHANG Yukun   MIAO Yanwei   SONG Qingwei*  

Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Song QW, E-mail: songqw1964@163.com

Conflicts of interest   None.

Received  2021-09-01
Accepted  2022-02-11
DOI: 10.12015/issn.1674-8034.2022.03.010
Cite this article as: Liu N, Zhang HN, Zhang YK, et al. A comparation analysis between IDEAL-IQ and mDixon Quant techniques in fat quantification of abdomen and vertebrae[J]. Chin J Magn Reson Imaging, 2022, 13(3): 49-53.DOI:10.12015/issn.1674-8034.2022.03.010

[1]
Kühn JP, Berthold F, Mayerle J, et al. Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance[J]. Radiology, 2015, 276(1): 129-136. DOI: 10.1148/radiol.15140446.
[2]
Lee SS, Park SH. Radiologic evaluation of nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20(23): 7392-7402. DOI: 10.3748/wjg.v20.i23.7392.
[3]
Samet JD, Deng J, Schafernak K, et al. Quantitative magnetic resonance imaging for determining bone marrow fat fraction at 1.5 T and 3.0 T: a technique to noninvasively assess cellularity and potential malignancy of the bone marrow[J]. Pediatr Radiol, 2021, 51(1): 94-102. DOI: 10.1007/s00247-020-04809-8.
[4]
Hyodo T, Yada N, Hori M, et al. Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: clinical evaluation[J]. Radiology, 2017, 283(1): 108-118. DOI: 10.1148/radiol.2017160130.
[5]
Tang A, Desai A, Hamilton G, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease[J]. Radiology, 2015, 274(2): 416-425. DOI: 10.1148/radiol.14140754.
[6]
Zhao RY, Hernando D, Harris DT, et al. Multisite multivendor validation of a quantitative MRI and CT compatible fat phantom[J]. Med Phys, 2021, 48(8): 4375-4386. DOI: 10.1002/mp.15038.
[7]
Zhan CY, Olsen S, Zhang HC, et al. Detection of hepatic steatosis and iron content at 3 Tesla: comparison of two-point Dixon, quantitative multi-echo Dixon, and MR spectroscopy[J]. Abdom Radiol (NY), 2019, 44(9): 3040-3048. DOI: 10.1007/s00261-019-02118-9.
[8]
Hamilton G, Yokoo T, Bydder M, et al. In vivo characterization of the liver fat ¹H MR spectrum[J]. NMR Biomed, 2011, 24(7): 784-790. DOI: 10.1002/nbm.1622.
[9]
Chen YD, Long LL, Jiang ZJ, et al. Quantification of pancreatic proton density fat fraction in diabetic pigs using MR imaging and IDEAL-IQ sequence[J]. BMC Med Imaging, 2019, 19(1): 38. DOI: 10.1186/s12880-019-0336-2.
[10]
Hwang SN. Editorial for "practical approaches to bone marrow fat fraction quantification across magnetic resonance imaging platforms"[J]. J Magn Reson Imaging, 2020, 52(1): 307-308. DOI: 10.1002/jmri.27177.
[11]
Wang XK, Hernando D, Reeder SB. Sensitivity of chemical shift-encoded fat quantification to calibration of fat MR spectrum[J]. Magn Reson Med, 2016, 75(2): 845-851. DOI: 10.1002/mrm.25681.
[12]
Noureddin M, Lam J, Peterson MR, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials[J]. Hepatology, 2013, 58(6): 1930-1940. DOI: 10.1002/hep.26455.
[13]
Hines CDG, Yu HZ, Shimakawa A, et al. Quantification of hepatic steatosis with 3-T MR imaging: validation in ob/ob mice[J]. Radiology, 2010, 254(1): 119-128. DOI: 10.1148/radiol.09090131.
[14]
Fukui H, Hori M, Fukuda Y, et al. Evaluation of fatty pancreas by proton density fat fraction using 3-T magnetic resonance imaging and its association with pancreatic cancer[J]. Eur J Radiol, 2019, 118: 25-31. DOI: 10.1016/j.ejrad.2019.06.024.
[15]
Hu L, Zha YF, Lin Y, et al. The feasibility of IDEAL-IQ quantitative evaluation of vertebral fat fraction content in rabbit models of diabetes mellitus[J]. Chin J Magn Reson Imaging, 2015, 6(12): 941-946. DOI: 10.3969/j.issn.1674-8034.2015.12.012.
[16]
Song Y, Song QW, Zhang HN, et al. 3D mDixon Quant based on compressed SENSE for quantitative study of lumbar vertebral body fat content[J]. Chin J Magn Reson Imaging, 2021, 12(4): 51-56. DOI: 10.12015/issn.1674-8034.2021.04.010.
[17]
Hernando D, Sharma SD, Aliyari Ghasabeh M, et al. Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5 T and 3 T using a fat-water phantom[J]. Magn Reson Med, 2017, 77(4): 1516-1524. DOI: 10.1002/mrm.26228.
[18]
Serai SD, Dillman JR, Trout AT. Proton density fat fraction measurements at 1.5- and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers[J]. Radiology, 2017, 284(1): 244-254. DOI: 10.1148/radiol.2017161786.
[19]
Athithan L, Gulsin GS, House MJ, et al. A comparison of liver fat fraction measurement on MRI at 3 T and 1.5 T[J]. PLoS One, 2021, 16(7): e0252928. DOI: 10.1371/journal.pone.0252928.
[20]
Schmeel FC, Vomweg T, Träber F, et al. Proton density fat fraction MRI of vertebral bone marrow: Accuracy, repeatability, and reproducibility among readers, field strengths, and imaging platforms[J]. J Magn Reson Imaging, 2019, 50(6): 1762-1772. DOI: 10.1002/jmri.26748.
[21]
Hernando D, Sharma SD, Aliyari Ghasabeh M, et al. Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom[J]. Magn Reson Med, 2017, 77(4): 1516-1524. DOI: 10.1002/mrm.26228.
[22]
Schneider E, Remer EM, Obuchowski NA, et al. Long-term inter-platform reproducibility, bias, and linearity of commercial PDFF MRI methods for fat quantification: a multi-center, multi-vendor phantom study[J]. Eur Radiol, 2021, 31(10): 7566-7574. DOI: 10.1007/s00330-021-07851-8.
[23]
Vu KN, Gilbert G, Chalut M, et al. MRI-determined liver proton density fat fraction, with MRS validation: comparison of regions of interest sampling methods in patients with type 2 diabetes[J]. J Magn Reson Imaging, 2016, 43(5): 1090-1099. DOI: 10.1002/jmri.25083.
[24]
Zhang N, Song QW, Liu AL, et al. Feasibility of threshold extraction method for compressed sensing 3D mDIXON liver fat quantification[J]. Chin J Med Imaging Technol, 2020, 36(11): 1667-1670. DOI: 10.13929/j.issn.1003-3289.2020.11.018.
[25]
You YR, Zhang QH, Liu AL, et al. The feasibility of semi-automatic segmentation technology for quantification of pancreatic fat: comparative study with traditional ROI methods[J]. Chin J Magn Reson Imaging, 2020, 11(12): 1124-1128. DOI: 10.12015/issn.1674-8034.2020.12.009.

PREV Research on the connectivity method of human and macaque brain regions based on DTI
NEXT The functional connectivity of default mode network and hippocampus in Alzheimer,s disease: A Meta-analysis based on SDM
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn