Share:
Share this content in WeChat
X
Original Articles
Coherence-based regional homogeneity study of acute and remitting multiple sclerosis
ZHU Yanyan  WANG Yao  HE Ting  WANG Lei  HUANG Muhua  ZHOU Fuqing 

Cite this article as: Zhu YY, Wang Y, He T, et al. Coherence-based regional homogeneity study of acute and remitting multiple sclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(3): 31-36. DOI:10.12015/issn.1674-8034.2022.03.007.


[Abstract] Objective To explore the coherence-based regional homogeneity (Cohe-ReHo) alterations of acute and remitting relapsing-remitting multiple sclerosis (RRMS) and it's clinical relevance.Materials and Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were obtained from 20 acute RRMS, 35 remitting RRMS and 20 healthy controls (HC), after the Cohe-ReHo calculation of the rs-fMRI scan, ANOVA and followed Post-hoc analysis was used for comparison between groups; a partial correlation analysis was followed performed on the Cohe-ReHo value in regions with significant differences between groups and the Expanded Disability Status Scale (EDSS), the Paced Auditory Serial Addition Test-3s (PASAT-3s) and the disease duration.Results Compared with HC, acute and remitting RRMS all showed decreased Cohe-ReHo in the bilateral anterior cingutate and left superior frontal gyrus (P<0.001); compared with HC or remitting RRMS, acute RRMS showed increased Cohe-ReHo in the right cuneus and middle occipital gyrus (P<0.001). EDSS was negatively correlated with the Cohe-ReHo of the left superior frontal gyrus in acute RRMS (r=-0.493, P=0.037) and the PASAT-3s was negatively correlated with the Cohe-ReHo of the left superior frontal gyrus in remitting RRMS (r=-0.382, P=0.028).Conclusions Both acute and remitting RRMS patients have disease-related brain dysfunction, while the acute RRMS patients mobilized more brain regions involving visual information processing in an attempt to maintain functional stability.
[Keywords] acute;remitting;relapsing-remitting multiple sclerosis;coherence-based regional homogeneity;resting-state functional magnetic resonance imaging

ZHU Yanyan   WANG Yao   HE Ting   WANG Lei   HUANG Muhua   ZHOU Fuqing*  

Department of Radiology, the First Affiliated Hospital of Nan Chang University, Nanchang 330006, China

zhou FQ, E-mail: fq.chou@yahoo.com

Conflicts of interest   None.

Received  2021-09-04
Accepted  2022-03-07
DOI: 10.12015/issn.1674-8034.2022.03.007
Cite this article as: Zhu YY, Wang Y, He T, et al. Coherence-based regional homogeneity study of acute and remitting multiple sclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(3): 31-36.DOI:10.12015/issn.1674-8034.2022.03.007

[1]
Huang MH. Research progress in the fMRI of cognitive impairment and plasticity of multiple sclerosis[J]. J Pract Radiol, 2018, 34(8): 1286-1288, 1303. DOI: 10.3969/j.issn.1002-1671.2018.08.037.
[2]
Fu JL, Chen XY, Gu Y, et al. Study of brain network in patients with relapsing-remitting multiple sclerosis with sensory disorders[J]. J Clin Radiol, 2020, 39(5): 865-869. DOI: 10.13437/j.cnki.jcr.2020.05.005.
[3]
Zang YF, Jiang TZ, Lu YL, et al. Regional homogeneity approach to fMRI data analysis[J]. NeuroImage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
[4]
Liu DQ, Yan CG, Ren JJ, et al. Using coherence to measure regional homogeneity of resting-state FMRI signal[J]. Front Syst Neurosci, 2010, 4: 24. DOI: 10.3389/fnsys.2010.00024.00024.
[5]
Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria[J]. Lancet Neurol, 2018, 17(2): 162-173. DOI: 10.1016/S1474-4422(17)30470-2.
[6]
Multiple Sclerosis Imaging Diagnostic Cooperative Group of China. Imaging diagnostic criteria for multiple sclerosis: Consensus of Chinese experts [J]. Chin J Radiol, 2017, 51(2): 81-85. DOI: 10.3760/cma.j.issn.1005-1201.2017.02.001.
[7]
Kurtzke JF. Historical and clinical perspectives of the expanded disability status scale[J]. Neuroepidemiology, 2008, 31(1): 1-9. DOI: 10.1159/000136645.
[8]
Zanto TP, Gazzaley A. Aging of the frontal lobe[J]. Handb Clin Neurol, 2019, 163: 369-389. DOI: 10.1016/B978-0-12-804281-6.00020-3.
[9]
Vogt BA. The cingulate cortex in neurologic diseases: history, structure, overview[M]//Cingulate Cortex. Amsterdam: Elsevier, 2019: 3-21. DOI: 10.1016/b978-0-444-64196-0.00001-7.
[10]
Cui YY, Liang HB, Zhu Q, et al. Resting state functional magnetic resonance imaging of somatic symptom disorder based on fALFF and DC[J]. Chin J Magn Reson Imaging, 2021, 12(7): 51-54. DOI: 10.12015/issn.1674-8034.2021.07.010.
[11]
Calabrese M, Battaglini M, Giorgio A, et al. Imaging distribution and frequency of cortical lesions in patients with multiple sclerosis[J]. Neurology, 2010, 75(14): 1234-1240. DOI: 10.1212/WNL.0b013e3181f5d4da.
[12]
Laganá MM, Mendozzi L, Pelizzari L, et al. Are cerebral perfusion and atrophy linked in multiple sclerosis? evidence for a multifactorial approach to assess neurodegeneration[J]. Curr Neurovasc Res, 2018, 15(4): 282-291. DOI: 10.2174/1567202616666181123164235.
[13]
Huang MH, Zhou FQ, Wu L, et al. Synchronization within, and interactions between, the default mode and dorsal attention networks in relapsing-remitting multiple sclerosis[J]. Neuropsychiatr Dis Treat, 2018, 14: 1241-1252. DOI: 10.2147/NDT.S155478.
[14]
Cassiano MT, Lanzillo R, Alfano B, et al. Voxel-based analysis of gray matter relaxation rates shows different correlation patterns for cognitive impairment and physical disability in relapsing-remitting multiple sclerosis[J]. Neuroimage Clin, 2020, 26: 102201. DOI: 10.1016/j.nicl.2020.102201.
[15]
Wu L, Zhang Y, Zhou FQ, et al. Altered intra- and interregional synchronization in relapsing-remitting multiple sclerosis: a resting-state fMRI study[J]. Neuropsychiatr Dis Treat, 2016, 12: 853-862. DOI: 10.2147/NDT.S98962.
[16]
Has Silemek AC, Fischer L, Pöttgen J, et al. Functional and structural connectivity substrates of cognitive performance in relapsing remitting multiple sclerosis with mild disability[J]. Neuroimage Clin, 2020, 25: 102177. DOI: 10.1016/j.nicl.2020.102177.
[17]
Bizzo BC, Arruda-Sanchez T, Tobyne SM, et al. Anterior insular resting-state functional connectivity is related to cognitive reserve in multiple sclerosis[J]. J Neuroimaging, 2021, 31(1): 98-102. DOI: 10.1111/jon.12779.
[18]
Strik M, Chard DT, Dekker I, et al. Increased functional sensorimotor network efficiency relates to disability in multiple sclerosis[J]. Mult Scler, 2021, 27(9): 1364-1373. DOI: 10.1177/1352458520966292.
[19]
Giannì C, Belvisi D, Conte A, et al. Altered sensorimotor integration in multiple sclerosis: a combined neurophysiological and functional MRI study[J]. Clin Neurophysiol, 2021, 132(9): 2191-2198. DOI: 10.1016/j.clinph.2021.05.028.
[20]
Pinter D, Beckmann CF, Fazekas F, et al. Morphological MRI phenotypes of multiple sclerosis differ in resting-state brain function[J]. Sci Rep, 2019, 9(1): 16221. DOI: 10.1038/s41598-019-52757-7.
[21]
Zhong JD, Chen DQ, Nantes JC, et al. Combined structural and functional patterns discriminating upper limb motor disability in multiple sclerosis using multivariate approaches[J]. Brain Imaging Behav, 2017, 11(3): 754-768. DOI: 10.1007/s11682-016-9551-4.
[22]
Frischer JM, Weigand SD, Guo Y, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque[J]. Ann Neurol, 2015, 78(5): 710-721. DOI: 10.1002/ana.24497.
[23]
Klistorner A, Triplett JD, Barnett MH, et al. Latency of multifocal visual evoked potential in multiple sclerosis: a visual pathway biomarker for clinical trials of remyelinating therapies[J]. J Clin Neurophysiol, 2021, 38(3): 186-191. DOI: 10.1097/WNP.0000000000000757.
[24]
Wang CY, Barton J, Kyle K, et al. Multiple sclerosis: structural and functional integrity of the visual system following alemtuzumab therapy[J]. J Neurol Neurosurg Psychiatry, 2021, 92(12): 1319-1324. DOI: 10.1136/jnnp-2021-326164.
[25]
Yang XB, Lu L, Li Q, et al. Altered spontaneous brain activity in patients with strabismic amblyopia: a resting-state fMRI study using regional homogeneity analysis[J]. Exp Ther Med, 2019, 18(5): 3877-3884. DOI: 10.3892/etm.2019.8038.
[26]
Liu W, Song C, Zhang XY, et al. Effects of chemotherapy on brain activity in resting state and cognitive function in breast cancer patients[J]. Chin J Magn Reson Imaging, 2019, 10(3): 174-178. DOI: 10.12015/issn.1674-8034.2019.03.003.
[27]
Yang XB, Lu L, Li Q, et al. Altered spontaneous brain activity in patients with strabismic amblyopia: a resting-state fMRI study using regional homogeneity analysis[J]. Exp Ther Med, 2019, 18(5): 3877-3884. DOI: 10.3892/etm.2019.8038.
[28]
Gabilondo I, Rilo O, Ojeda N, et al. The influence of posterior visual pathway damage on visual information processing speed in multiple sclerosis[J]. Mult Scler, 2017, 23(9): 1276-1288. DOI: 10.1177/1352458516676642.
[29]
Rohowetz LJ, Vu Q, Ablabutyan L, et al. Microperimetry as a diagnostic tool for the detection of early, subclinical retinal damage and visual impairment in multiple sclerosis[J]. BMC Ophthalmol, 2020, 20: 367. DOI: 10.1186/s12886-020-01620-9.
[30]
Carcelén-Gadea M, Quintanilla-Bordás C, Gracia-García A, et al. Functional and structural changes in the visual pathway in multiple sclerosis[J]. Brain Behav, 2019, 9(12): e01467. DOI: 10.1002/brb3.1467.

PREV MR elastography for evaluation of pathological grade of pancreatic ductal adenocarcinoma
NEXT The abnormal topological properties of brain functional network in children with autism spectrum disorders based on graph theory analysis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn