Share:
Share this content in WeChat
X
Review
Current state-of-the-art of MRI zero echo time technique
DOU Han  WANG Xiaoming 

Cite this article as: Dou H, Wang XM. Current state-of-the-art of MRI zero echo time technique[J]. Chin J Magn Reson Imaging, 2022, 13(2): 167-170. DOI:10.12015/issn.1674-8034.2022.02.042.


[Abstract] Zero echo time (ZTE) technology is a 3D volumetric imaging sequence, with unique gradient system switching sequence and radial K-space sampling, spatial encoding can be carried out immediately after radiofrequency excitation, which achieves higher data acquisition efficiency. Clinical studies mainly focus on cerebrovascular imaging, depiction of pulmonary parenchymal structure and lesion details, measurement and evaluation of bone and joint structures. In this paper, the main clinical application progress of ZTE in the above aspects was systematically analyzed and reviewed.
[Keywords] zero echo time;magnetic resonance imaging;three-dimensional imaging;central nervous system;thoracic imaging;clinical applications

DOU Han   WANG Xiaoming*  

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110000, China

WANG XM, E-mail: wangxm024@163.com

Conflicts of interest   None.

Received  2021-09-15
Accepted  2022-01-30
DOI: 10.12015/issn.1674-8034.2022.02.042
Cite this article as: Dou H, Wang XM. Current state-of-the-art of MRI zero echo time technique[J]. Chin J Magn Reson Imaging, 2022, 13(2): 167-170.DOI:10.12015/issn.1674-8034.2022.02.042

[1]
Weiger M, Brunner DO, Dietrich BE, et al. ZTE imaging in humans[J]. Magn Reson Med, 2013, 70(2): 328-332. DOI: 10.1002/mrm.24816.
[2]
Weiger M, Pruessmann K. MRI with zero echo time[M]. eMagRes, 2012
[3]
Weiger M, Wu MM, Wurnig MC, et al. ZTE imaging with long-T2 suppression[J]. NMR Biomed, 2015, 28(2): 247-254. DOI: 10.1002/nbm.3246.
[4]
Qi X, Sha L, Lv JB, et al. Compared study of the cerebral artery stenosis assessed by ZTE-MRA and TOF-MRA[J]. Chin J Magn Reson Imaging, 2021, 12(2): 70-73. DOI: 10.12015/issn.1674-8034.2021.02.016.
[5]
Zhang C, Dou WQ, Yu K, et al. The feasibility of non-contrast-enhanced zero echo time magnetic resonance angiography for characterization of intracranial atherosclerotic disease[J]. Quant Imaging Med Surg, 2021, 11(6): 2442-2452. DOI: 10.21037/qims-20-696.
[6]
Song Y, Chao YJ, Xu YJ. Comparison between 3D TOF-MRA and ZTE-MRA in the imaging of cerebral vessels[J]. Chin J Med Phys, 2020, 37(12): 1529-1533. DOI: 10.3969/j.issn.1005-202X.2020.12.011.
[7]
Shang SA, Wang LJ, Ye J, et al. Can hybrid arterial spin labeling-tagged zero-echo-time magnetic resonance angiography be an effective candidate in the evaluation of intracranial artery diseases? A clinical feasibility study[J]. J Magn Reson Imaging, 2021, 54(3): 938-949. DOI: 10.1002/jmri.27629.
[8]
Chen X, Wang W. Value of ZTEMRA for assessing the blood flow in the celebral vessels with implanted stents[J]. J Clin Radiol, 2020, 39(7): 1434-1438. DOI: 10.13437/j.cnki.jcr.2020.07.041.
[9]
Shang SA, Ye J, Luo XF, et al. Silent MR angiography in the detection of intracranial aneurysm: a feasibility study[J]. Chin J Radiol, 2020, 54(4): 325-331. DOI: 10.3760/cma.j.cn112149-20190430-00210.
[10]
Song Y, Huang J, Qi P, et al. Investigation of zero echo time arterial spin labeling MR angiography in the follow-up of endovascular treatment of intracranial aneurysm[J]. Chin J Radiol, 2018, 52(8): 624-629. DOI: 10.3760/cma.j.issn.1005?1201.2018.08.011.
[11]
Shang SA, Ye J, Luo XF, et al. Follow-up assessment of coiled intracranial aneurysms using zTE MRA as compared with TOF MRA: a preliminary image quality study[J]. Eur Radiol, 2017, 27(10): 4271-4280. DOI: 10.1007/s00330-017-4794-z.
[12]
Seifert AC, Li C, Wilhelm MJ, et al. Towards quantification of myelin by solid-state MRI of the lipid matrix protons[J]. Neuroimage, 2017, 163: 358-367. DOI: 10.1016/j.neuroimage.2017.09.054.
[13]
Jang H, Carl M, Ma YJ, et al. Inversion recovery zero echo time (IR-ZTE) imaging for direct myelin detection in human brain: a feasibility study[J]. Quant Imaging Med Surg, 2020, 10(5): 895-906. DOI: 10.21037/qims.2020.04.13.
[14]
Costagli M, Symms MR, Angeli L, et al. Assessment of Silent T1-weighted head imaging at 7 T[J]. Eur Radiol, 2016, 26(6): 1879-1888. DOI: 10.1007/s00330-015-3954-2.
[15]
Solana AB, Menini A, Sacolick LI, et al. Quiet and distortion-free, whole brain BOLD fMRI using T2-prepared RUFIS[J]. Magn Reson Med, 2016, 75(4): 1402-1412. DOI: 10.1002/mrm.25658.
[16]
Baligand C, Barret O, Tourais A, et al. Zero echo time 17O-MRI reveals decreased cerebral metabolic rate of oxygen consumption in a murine model of amyloidosis[J]. Metabolites, 2021, 11(5): 263. DOI: 10.3390/metabo11050263.
[17]
Johnson KM, Fain SB, Schiebler ML, et al. Optimized 3D ultrashort echo time pulmonary MRI[J]. Magn Reson Med, 2013, 70(5): 1241-1250. DOI: 10.1002/mrm.24570.
[18]
Gai ND, Malayeri AA, Bluemke DA. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE)[J]. J Magn Reson Imaging, 2017, 45(4): 1097-1104. DOI: 10.1002/jmri.25487.
[19]
Bianchi A, Tibiletti M, Kjørstad Å, et al. Three-dimensional accurate detection of lung emphysema in rats using ultra-short and zero echo time MRI[J]. NMR Biomed, 2015, 28(11): 1471-1479. DOI: 10.1002/nbm.3417.
[20]
Strobel K, Hoerr V, Schmid F, et al. Early detection of lung inflammation: exploiting T1-effects of iron oxide particles using UTE MRI[J]. Magn Reson Med, 2012, 68(6): 1924-1931. DOI: 10.1002/mrm.24180.
[21]
Bae K, Jeon KN, Hwang MJ, et al. Comparison of lung imaging using three-dimensional ultrashort echo time and zero echo time sequences: preliminary study[J]. Eur Radiol, 2019, 29(5): 2253-2262. DOI: 10.1007/s00330-018-5889-x.
[22]
Bae K, Jeon KN, Hwang MJ, et al. Respiratory motion-resolved four-dimensional zero echo time (4D ZTE) lung MRI using retrospective soft gating: feasibility and image quality compared with 3D ZTE[J]. Eur Radiol, 2020, 30(9): 5130-5138. DOI: 10.1007/s00330-020-06890-x.
[23]
Wurnig MC, Weiger M, Wu MM, et al. In vivo magnetization transfer imaging of the lung using a zero echo time sequence at 4.7 Tesla in mice: initial experience[J]. Magn Reson Med, 2016, 76(1): 156-162. DOI: 10.1002/mrm.25882.
[24]
Marcon M, Keller D, Wurnig MC, et al. Separation of collagen-bound and porous bone-water longitudinal relaxation in mice using a segmented inversion recovery zero-echo-time sequence[J]. Magn Reson Med, 2017, 77(5): 1909-1915. DOI: 10.1002/mrm.26277.
[25]
Breighner RE, Endo Y, Konin GP, et al. Technical developments: zero echo time imaging of the shoulder: enhanced osseous detail by using MR imaging[J]. Radiology, 2018, 286(3): 960-966. DOI: 10.1148/radiol.2017170906.
[26]
de Mello RAF, Ma YJ, Ashir A, et al. Three-dimensional zero echo time magnetic resonance imaging versus 3-dimensional computed tomography for glenoid bone assessment[J]. Arthroscopy, 2020, 36(9): 2391-2400. DOI: 10.1016/j.arthro.2020.05.042.
[27]
Breighner RE, Bogner EA, Lee SC, et al. Evaluation of osseous morphology of the hip using zero echo time magnetic resonance imaging[J]. Am J Sports Med, 2019, 47(14): 3460-3468. DOI: 10.1177/0363546519878170.
[28]
Delso G, Wiesinger F, Sacolick LI, et al. Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull[J]. J Nucl Med, 2015, 56(3): 417-422. DOI: 10.2967/jnumed.114.149997.
[29]
Wiesinger F, Sacolick LI, Menini A, et al. Zero TE MR bone imaging in the head[J]. Magn Reson Med, 2016, 75(1): 107-114. DOI: 10.1002/mrm.25545.
[30]
Sgard B, Khalifé M, Bouchut A, et al. ZTE MR-based attenuation correction in brain FDG-PET/MR: performance in patients with cognitive impairment[J]. Eur Radiol, 2020, 30(3): 1770-1779. DOI: 10.1007/s00330-019-06514-z.
[31]
Seifert AC, Li C, Wehrli SL, et al. A surrogate measure of cortical bone matrix density by long T2-suppressed MRI[J]. J Bone Miner Res, 2015, 30(12): 2229-2238. DOI: 10.1002/jbmr.2580.
[32]
Weiger M, Pruessmann KP, Bracher AK, et al. High-resolution ZTE imaging of human teeth[J]. NMR Biomed, 2012, 25(10): 1144-1151. DOI: 10.1002/nbm.2783.
[33]
Hövener JB, Zwick S, Leupold J, et al. Dental MRI: imaging of soft and solid components without ionizing radiation[J]. J Magn Reson Imaging, 2012, 36(4): 841-846. DOI: 10.1002/jmri.23712.
[34]
Beenakker JM, Wezel J, Groen J, et al. Silent volumetric multi-contrast 7 Tesla MRI of ocular tumors using Zero Echo Time imaging[J]. PLoS One, 2019, 14(9): e0222573. DOI: 10.1371/journal.pone.0222573.
[35]
Lee SK, Bulumulla S, Wiesinger F, et al. Tissue electrical property mapping from zero echo-time magnetic resonance imaging[J]. IEEE Trans Med Imaging, 2015, 34(2): 541-550. DOI: 10.1109/TMI.2014.2361810.
[36]
Iwadate Y, Nozaki A, Nunokawa Y, et al. Silent navigator-triggered silent MRI of the abdomen[J]. Magn Reson Med, 2018, 79(4): 2170-2175. DOI: 10.1002/mrm.26869.
[37]
Caballero-Insaurriaga J, Rodríguez-Rojas R, Martínez-Fernández R, et al. Zero TE MRI applications to transcranial MR-guided focused ultrasound: patient screening and treatment efficiency estimation[J]. J Magn Reson Imaging, 2019, 50(5): 1583-1592. DOI: 10.1002/jmri.26746.
[38]
Yang J, Wiesinger F, Kaushik S, et al. Evaluation of sinus/edge-corrected zero-echo-time-based attenuation correction in brain PET/MRI[J]. J Nucl Med, 2017, 58(11): 1873-1879. DOI: 10.2967/jnumed.116.188268.
[39]
Sekine T, Ter Voert EE, Warnock G, et al. Clinical evaluation of zero-echo-time attenuation correction for brain 18F-FDG PET/MRI: comparison with atlas attenuation correction[J]. J Nucl Med, 2016, 57(12): 1927-1932. DOI: 10.2967/jnumed.116.175398.
[40]
Tsujikawa T, Kanno M, Ito Y, et al. Zero echo time-based PET/MRI attenuation correction in patients with oral cavity cancer: initial experience[J]. Clin Nucl Med, 2020, 45(7): 501-505. DOI: 10.1097/RLU.0000000000003091.
[41]
Delso G, Kemp B, Kaushik S, et al. Improving PET/MR brain quantitation with template-enhanced ZTE[J]. Neuroimage, 2018, 181: 403-413. DOI: 10.1016/j.neuroimage.2018.07.029.
[42]
Leynes AP, Yang J, Wiesinger F, et al. Zero-echo-time and Dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI[J]. J Nucl Med, 2018, 59(5): 852-858. DOI: 10.2967/jnumed.117.198051.

PREV Progress in the application of ultrashort magnetic resonance echo time sequences
NEXT
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn