Share:
Share this content in WeChat
X
Review
Application progress of intravoxel incoherent motion diffusion weighted imaging in lungs
LÜ Siqiang  QIN Wenheng  SUN Zhanguo 

Cite this article as: Lü SQ, Qin WH, Sun ZG. Application progress of intravoxel incoherent motion diffusion weighted imaging in lungs[J]. Chin J Magn Reson Imaging, 2022, 13(2): 141-144. DOI:10.12015/issn.1674-8034.2022.02.035.


[Abstract] The diffusion weighted imaging (DWI) can reflect the degree of diffusion of water molecules in tissues without contrast enhancement. However, DWI is a mono-exponential model, which cannot separate the pseudo-diffusion from pure molecular diffusion. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) utilizes a double-exponential model to obtain parameters of pure water molecule diffusion and microcirculatory perfusion-related diffusion, more comprehensively and accurately reflects the complexity of the microstructure of the tumor tissue. In recent years, the application of IVIM-DWI in lung has been gradually increasing and become the focus of lung functional magnetic resonance imaging research. In this paper, we mainly reviewed the technical parameters of IVIM-DWI in lung and related research progress in the diagnosis and treatment of the lung cancer.
[Keywords] lung cancer;intravoxel incoherent motion;magnetic resonance imaging;diffusion weighted imaging

LÜ Siqiang1   QIN Wenheng2   SUN Zhanguo2*  

1 Clinical Medical College of Jining Medical University, Jining 272013, China

2 Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Jining 272029, China

Sun ZG, E-mail: yingxiangszg@163.com

Conflicts of interest   None.

Received  2021-10-08
Accepted  2022-02-07
DOI: 10.12015/issn.1674-8034.2022.02.035
Cite this article as: Lü SQ, Qin WH, Sun ZG. Application progress of intravoxel incoherent motion diffusion weighted imaging in lungs[J]. Chin J Magn Reson Imaging, 2022, 13(2): 141-144.DOI:10.12015/issn.1674-8034.2022.02.035

[1]
Liu H, Zheng L, Shi G, et al. Pulmonary Functional Imaging for Lung Adenocarcinoma: Combined MRI Assessment Based on IVIM-DWI and OE-UTE-MRI[J]. Front Oncol, 2021, 11: 677942. DOI: 10.3389/fonc.2021.677942.
[2]
Liang J, Li J, Li Z, et al. Differentiating the lung lesions using Intravoxel incoherent motion diffusion-weighted imaging: a meta-analysis[J]. BMC Cancer, 2020, 20(1): 799. DOI: 10.1186/s12885-020-07308-z.
[3]
Ercolani G, Capuani S, Antonelli A, et al. IntraVoxel Incoherent Motion (IVIM) MRI of fetal lung and kidney: Can the perfusion fraction be a marker of normal pulmonary and renal maturation?[J]. Eur J Radiol, 2021, 139: 109726. DOI: 10.1016/j.ejrad.2021.109726.
[4]
Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
[5]
Li K, Machireddy A, Tudorica A, et al. Discrimination of Malignant and Benign Breast Lesions Using Quantitative Multiparametric MRI: A Preliminary Study[J]. Tomography, 2020, 6(2): 148-159. DOI: 10.18383/j.tom.2019.00028.
[6]
Martens RM, Koopman T, Lavini C, et al. Early Response Prediction of Multiparametric Functional MRI and (18)F-FDG-PET in Patients with Head and Neck Squamous Cell Carcinoma Treated with (Chemo) Radiation[J]. Cancers (Basel), 2022, 14(1): 216. DOI: 10.3390/cancers14010216.
[7]
Van Baalen S, Froeling M, Asselman M, et al. Mono, bi- and tri-exponential diffusion MRI modelling for renal solid masses and comparison with histopathological findings[J]. Cancer Imaging, 2018, 18(1): 44. DOI: 10.1186/s40644-018-0178-0.
[8]
Becker AS, Wurnig MC, Finkenstaedt T, et al. Non-parametric intravoxel incoherent motion analysis of the thyroid gland[J]. Heliyon, 2017, 3(1): e00239. DOI: 10.1016/j.heliyon.2017.e00239.
[9]
Kovač JD, Daković M, Janković A, et al. The role of quantitative diffusion-weighted imaging in characterization of hypovascular liver lesions: A prospective comparison of intravoxel incoherent motion derived parameters and apparent diffusion coefficient[J]. PLoS One, 2021, 16(2): e0247301. DOI: 10.1371/journal.pone.0247301.
[10]
Karki K, Hugo GD, Ford JC, et al. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer[J]. Phys Med Biol, 2015, 60(20): 7877-7891. DOI: 10.1088/0031-9155/60/20/7877.
[11]
Wan Q, Deng YS, Zhou JX, et al. Intravoxel incoherent motion diffusion-weighted MR imaging in assessing and characterizing solitary pulmonary lesions[J]. Sci Rep, 2017, 7: 43257. DOI: 10.1038/srep43257.
[12]
Cohen AD, Schieke MC, Hohenwalter MD, et al. The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver[J]. Magn Reson Med, 2015, 73(1): 306-311. DOI: 10.1002/mrm.25109.
[13]
Fang T, Meng N, Feng P, et al. A Comparative Study of Amide Proton Transfer Weighted Imaging and Intravoxel Incoherent Motion MRI Techniques Versus (18) F-FDG PET to Distinguish Solitary Pulmonary Lesions and Their Subtypes[J]. J Magn Reson Imaging, 2021. DOI: 10.1002/jmri.27977.
[14]
Karayama M, Yoshizawa N, Sugiyama M, et al. Intravoxel incoherent motion magnetic resonance imaging for predicting the long-term efficacy of immune checkpoint inhibitors in patients with non-small-cell lung cancer[J]. Lung Cancer, 2020, 143: 47-54. DOI: 10.1016/j.lungcan.2020.03.013.
[15]
Deng Y, Li X, Lei Y, et al. Use of diffusion-weighted magnetic resonance imaging to distinguish between lung cancer and focal inflammatory lesions: a comparison of intravoxel incoherent motion derived parameters and apparent diffusion coefficient[J]. Acta Radiol, 2016, 57(11): 1310-1317. DOI: 10.1177/0284185115586091.
[16]
Wan Q, Lei Q, Wang P, et al. Intravoxel Incoherent Motion Diffusion-Weighted Imaging of Lung Cancer: Comparison Between Turbo Spin-Echo and Echo-Planar Imaging[J]. J Comput Assist Tomogr, 2020, 44(3): 334-340. DOI: 10.1097/rct.0000000000001004.
[17]
Mikayama R, Yabuuchi H, Sonoda S, et al. Comparison of intravoxel incoherent motion diffusion-weighted imaging between turbo spin-echo and echo-planar imaging of the head and neck[J]. Eur Radiol, 2018, 28(1): 316-324. DOI: 10.1007/s00330-017-4990-x.
[18]
Panyarak W, Chikui T, Yamashita Y, et al. Image Quality and ADC Assessment in Turbo Spin-Echo and Echo-Planar Diffusion-Weighted MR Imaging of Tumors of the Head and Neck[J]. Acad Radiol, 2019, 26(10): e305-e316. DOI: 10.1016/j.acra.2018.11.016.
[19]
Liao ZH, Ming B, Ma C, et al. Diffusion weighted imaging of head based on GRADE-DWI sequence[J]. Chin J Magn Reson Imaging, 2020, 11(6): 433-437. DOI: 10.12015/issn.1674-8034.2020.06.007.
[20]
Yoshida M, Nakaura T, Inoue T, et al. Magnetic resonance cholangiopancreatography with GRASE sequence at 3.0T: does it improve image quality and acquisition time as compared with 3D TSE?[J]. Eur Radiol, 2018, 28(6): 2436-2443. DOI: 10.1007/s00330-017-5240-y.
[21]
Cai RF, Cui L, Jiang JQ, et al. Comparison of DWI image quality with three breath collection techniques for hilar and mediastinal lymph nodes in lung cancer[J]. J Pract Radiol, 2018, 34(11): 1783-1787. DOI: 10.3969/j.issn.1002-1671.2018.11.035.
[22]
Swerkersson S, Grundberg O, Kölbeck K, et al. Optimizing diffusion-weighted magnetic resonance imaging for evaluation of lung tumors: A comparison of respiratory triggered and free breathing techniques[J]. Eur J Radiol Open, 2018, 5: 189-193. DOI: 10.1016/j.ejro.2018.10.003.
[23]
Wan Q, Deng YS, Lei Q, et al. Differentiating between malignant and benign solid solitary pulmonary lesions: are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging?[J]. Eur Radiol, 2019, 29(3): 1607-1615. DOI: 10.1007/s00330-018-5714-6.
[24]
Zheng Y, Huang W, Zhang X, et al. A Noninvasive Assessment of Tumor Proliferation in Lung cancer Patients using Intravoxel Incoherent Motion Magnetic Resonance Imaging[J]. J Cancer, 2021, 12(1): 190-197. DOI: 10.7150/jca.48589.
[25]
Song M, Yue Y, Jin Y, et al. Intravoxel incoherent motion and ADC measurements for differentiating benign from malignant thyroid nodules: utilizing the most repeatable region of interest delineation at 3.0 T[J]. Cancer Imaging, 2020, 20(1): 9. DOI: 10.1186/s40644-020-0289-2.
[26]
Ai Z, Han Q, Huang Z, et al. The value of multiparametric histogram features based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for the differential diagnosis of liver lesions[J]. Ann Transl Med, 2020, 8(18): 1128. DOI: 10.21037/atm-20-5109.
[27]
Usuda K, Iwai S, Yamagata A, et al. Whole-Lesion Apparent Diffusion Coefficient Histogram Analysis: Significance for Discriminating Lung Cancer from Pulmonary Abscess and Mycobacterial Infection[J]. Cancers (Basel), 2021, 13(11): 2720. DOI: 10.3390/cancers13112720.
[28]
Tsuchiya N, Doai M, Usuda K, et al. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion[J]. PLoS One, 2017, 12(2): e0172433. DOI: 10.1371/journal.pone.0172433.
[29]
Yuan M, Zhong Y, Zhang YD, et al. Volumetric analysis of intravoxel incoherent motion imaging for assessment of solitary pulmonary lesions[J]. Acta Radiol, 2017, 58(12): 1448-1456. DOI: 10.1177/0284185117698863.
[30]
Peng Q, Huang Y, Tang W, et al. Comparison of parameters for diffusion-weighted intravoxel incoherent motion imaging in lung cancer patients with different histopathological subtypes[J]. Chin J Oncol, 2018, 40(11): 824-828. DOI: 10.3760/cma.j.issn.0253-3766.2018.11.005.
[31]
Yuan M, Zhang YD, Zhu C, et al. Comparison of intravoxel incoherent motion diffusion-weighted MR imaging with dynamic contrast-enhanced MRI for differentiating lung cancer from benign solitary pulmonary lesions[J]. J Magn Reson Imaging, 2016, 43(3): 669-679. DOI: 10.1002/jmri.25018.
[32]
Jiang J, Fu Y, Hu X, et al. The value of diffusion-weighted imaging based on monoexponential and biexponential models for the diagnosis of benign and malignant lung nodules and masses[J]. Br J Radiol, 2020, 93(1110): 20190400. DOI: 10.1259/bjr.20190400.
[33]
Wang LL, Lin J, Liu K, et al. Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging[J]. Eur Radiol, 2014, 24(8): 1914-1922. DOI: 10.1007/s00330-014-3176-z.
[34]
Hou YJ, Jin XW, Chen JX, et al. Application of intravoxel incoherent motion diffusion-weighted imaging in diagnosis of lung cancer[J]. J Pract Radiol, 2016, 32(8): 1194-1197, 1217. DOI: 10.3969/j.issn.1002-1671.2016.08.008.
[35]
Yu FF, Xie L, Wang YB, et al. The Application of Diffusion Weighted Magnetic Resonance Imaging with Single and Double Index Models in Evaluating the Differentiation Degree of Solid Non-Small Cell Lung Cancer[J]. J Clin Radiol, 2019, 38(12): 2303-2306. DOI: 10.13437/j.cnki.jcr.2019.12.018.
[36]
Ye X, Chen S, Tian Y, et al. A preliminary exploration of the intravoxel incoherent motion applied in the preoperative evaluation of mediastinal lymph node metastasis of lung cancer[J]. J Thorac Dis, 2017, 9(4): 1073-1080. DOI: 10.21037/jtd.2017.03.110.
[37]
Yuan M, Pu XH, Xu XQ, et al. Lung adenocarcinoma: Assessment of epidermal growth factor receptor mutation status based on extended models of diffusion-weighted image[J]. J Magn Reson Imaging, 2017, 46(1): 281-289. DOI: 10.1002/jmri.25572.
[38]
Yuan Z, Niu XM, Liu XM, et al. Use of diffusion-weighted magnetic resonance imaging (DW-MRI) to predict early response to anti-tumor therapy in advanced non-small cell lung cancer (NSCLC): a comparison of intravoxel incoherent motion-derived parameters and apparent diffusion coefficient[J]. Transl Lung Cancer Res, 2021, 10(8): 3671-3681. DOI: 10.21037/tlcr-21-610.
[39]
Wan Q, Bao Y, Xia X, et al. Intravoxel Incoherent Motion Diffusion-Weighted Imaging for Predicting and Monitoring the Response of Anti-Angiogenic Treatment in the Orthotopic Nude Mouse Model of Lung Adenocarcinoma[J]. J Magn Reson Imaging, 2021. DOI: 10.1002/jmri.27920.
[40]
Jiang JQ, Cui L, Cai RF, et al. The value of diffusion-weighted imaging based on monoexponential and biexponential model in predicting the response of chemotherapy in non-small cell lung cancer patients[J]. Chin J Radiol, 2018, 52(11): 829-835. DOI: 10.3760/cma.j.issn.1005-1201.2018.11.004.
[41]
Shi C, Liu D, Xiao Z, et al. Monitoring Tumor Response to Antivascular Therapy Using Non-Contrast Intravoxel Incoherent Motion Diffusion-Weighted MRI[J]. Cancer Res, 2017, 77(13): 3491-3501. DOI: 10.1158/0008-5472.Can-16-2499.
[42]
Huang C, Liang J, Ma M, et al. Evaluating the Treatment Efficacy of Nano-Drug in a Lung Cancer Model Using Advanced Functional Magnetic Resonance Imaging[J]. Front Oncol, 2020, 10: 563932. DOI: 10.3389/fonc.2020.563932.

PREV The application of cardiovascular magnetic resonance in prognosis evaluation and risk stratification in hypertrophic cardiomyopathy
NEXT Research status and potential of multi-parameter breast MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn