Share this content in WeChat
Research progress of MRI technology in the diagnosis of parotid tumor
HAN Lei  WU Xiaoping 

Cite this article as: Han L, Wu XP. Research progress of MRI technology in the diagnosis of parotid tumor[J]. Chin J Magn Reson Imaging, 2022, 13(2): 133-136. DOI:10.12015/issn.1674-8034.2022.02.033.

[Abstract] Parotid tumors are relatively rare histologically heterogeneous tumors. Because of their complex pathological types and non-specific clinical presentation, preoperative differentiation of tumor benignity and malignancy and different subtypes is very important for treatment strategy planning. In recent years, MRI technology has developed rapidly. The application of various technologies makes magnetic resonance examination of great significance in distinguishing benign and malignant parotid tumors and evaluating prognosis. The authors mainly focus on diffusion-weighted imaging (DWI), amide proton transfer (APT) imaging, arterial spin labeling (ASL) perfusion-weighted imaging and radiomics for evaluating parotid gland tumors. The research progress of parotid tumors is reviewed, which provides an basis and reference for the differential diagnosis of benign and malignant parotid tumors and their classification, planning treatment plans and evaluating tumor prognosis.
[Keywords] magnetic resonance imaging;parotid tumors;radiomics;diffusion-weighted imaging;amide proton transfer;arterial spin labeling

HAN Lei   WU Xiaoping*  

Department of Radiology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, Xi'an 710003, China

Wu XP, E-mail:

Conflicts of interest   None.

Received  2021-08-10
Accepted  2022-02-08
DOI: 10.12015/issn.1674-8034.2022.02.033
Cite this article as: Han L, Wu XP. Research progress of MRI technology in the diagnosis of parotid tumor[J]. Chin J Magn Reson Imaging, 2022, 13(2): 133-136.DOI:10.12015/issn.1674-8034.2022.02.033

Reichart PA, Philipsen HP, Sciubba JJ. The new classification of Head and Neck Tumours (WHO)—any changes?[J]. Oral Oncol, 2006, 42(8): 757-758. DOI: 10.1016/j.oraloncology.2005.10.011.
Masmoudi M, Hasnaoui M, Guizani R, et al. Performance of the magnetic resonance imaging in parotid gland tumor histopathology[J]. Pan Afr Med J, 2021, 39: 10. DOI: 10.11604/pamj.2021.39.10.27813.
Yabuuchi H, Kamitani T, Sagiyama K, et al. Characterization of parotid gland tumors: added value of permeability MR imaging to DWI and DCE-MRI[J]. Eur Radiol, 2020, 30(12): 6402-6412. DOI: 10.1007/s00330-020-07004-3.
Karaman CZ, Tanyeri A, Özgür R, et al. Parotid gland tumors: comparison of conventional and diffusion-weighted MRI findings with histopathological results[J]. Dentomaxillofac Radiol, 2021, 50(4). DOI: 10.1259/dmfr.20200391.
Eravcı FC, Sözmen CD, Özcan KM, et al. Conventional and Diffusion-Weighted MR Imaging Findings of Parotid Gland Tumors[J]. Turk Arch Otorhinolaryngol, 2020, 58(3): 174-180. DOI: 10.5152/tao.2020.5379.
Soylemez UP, Atalay B. Differentiation of Benign and Malignant Parotid Gland Tumors with MRI and Diffusion Weighted Imaging[J]. Medeni Med J, 2021, 36(2): 138-145. DOI: 10.5222/MMJ.2021.84666.
Huang N, Xiao ZB, Chen Y, et al. Quantitative dynamic contrast-enhanced MRI and readout segmentation of long variable echo-trains diffusion-weighted imaging in differentiating parotid gland tumors[J]. Neuroradiology, 2021, 63(10): 1709-1719. DOI: 10.1007/s00234-021-02758-z.
Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition[J]. Magn Reson Med, 2009, 62(2): 468-475. DOI: 10.1002/mrm.22024.
Jiang JS, Zhu LN, Wu Q, et al. Feasibility study of using simultaneous multi-slice RESOLVE diffusion weighted imaging to assess parotid gland tumors: comparison with conventional RESOLVE diffusion weighted imaging[J]. BMC Med Imaging, 2020, 20(1): 93. DOI: 10.1186/s12880-020-00492-1.
Abdel Razek AA. Characterization of salivary gland tumours with diffusion tensor imaging[J]. Dentomaxillofac Radiol, 2018, 47(5): 20170343. DOI: 10.1259/dmfr.20170343.
Qian W, Xu XQ, Zhu LN, et al. Preliminary study of using diffusion kurtosis imaging for characterizing parotid gland tumors[J]. Acta Radiol, 2019, 60(7): 887-894. DOI: 10.1177/0284185118803784.
Iima M. Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in Oncology: Applications, Challenges, and Future Trends[J]. Magn Reson Med Sci, 2021, 20(2): 125-138. DOI: 10.2463/mrms.rev.2019-0124.
Sumi M, Van CM, Sumi T, et al. Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors[J]. Radiology, 2012, 263(3): 770-777. DOI: 10.1148/radiol.12111248.
Liu KH, Ding CW. Basic principles of intravoxel incoherent motion imaging and its application in Sjögren's syndrome[J]. Chin J Magn Reson Imaging, 2022, 13(1): 161-163. DOI: 10.12015/issn.1674-8034.2022.01.038.
Noriyuki F, Tomohiro S, Akihiro H,et al. Utility of a Hybrid IVIM-DKI Model to Predict the Development of Distant Metastasis in Head and Neck Squamous Cell Carcinoma Patients[J]. Magn Reson Med Sci, 2018, 17(1): 21-27. DOI: 10.2463/
Sun PZ. Quasi-steady state chemical exchange saturation transfer (QUASS CEST) analysis-correction of the finite relaxation delay and saturation time for robust CEST measurement[J]. Magn Reson Med, 2021, 85(6): 3281-3289. DOI: 10.1002/mrm.28653.
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956.
Kong YQ, Qu QQ, Ming L, et al. Research progress of amide proton transfer imaging in urogenital diseases[J]. Chin J Magn Reson Imaging, 2021, 12(10): 118-120. DOI: 10.12015/issn.1674-8034.2021.10.031.
Kamitani T, Sagiyama K, Togao O, et al. Amide proton transfer (APT) imaging of parotid tumors: Differentiation of malignant and benign tumors[J]. Eur J Radiol, 2020, 129: 109047. DOI: 10.1016/j.ejrad.2020.109047.
Chen Y, Wang X, Su T, et al. Feasibility evaluation of amide proton transfer-weighted imaging in the parotid glands: a strategy to recognize artifacts and measure APT value[J]. Quant Imaging Med Surg, 2021, 11(6): 2279-2291. DOI: 10.21037/qims-20-675.
Abdel Razek AA. Arterial spin labelling and diffusion-weighted magnetic resonance imaging in differentiation of recurrent head and neck cancer from post-radiation changes[J]. J Laryngol Otol, 2018, 132(10): 923-928. DOI: 10.1017/S0022215118001743.
Kato H, Kanematsu M, Watanabe H, et al. Perfusion imaging of parotid gland tumours: usefulness of arterial spin labeling for differentiating Warthin's tumours[J]. Eur Radiol, 2015, 25(11): 3247-3254. DOI: 10.1007/s00330-015-3755-7.
Gao M, Xiao QX, Liu NZ, et al. Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessing Parotid Gland Tumors: Correlation and Comparison with Arterial Spin Labeling Imaging[J]. Korean J Radiol, 2021, 22(2). DOI: 10.3348/kjr.2020.0290.
Abdel Razek AA. Multi-parametric MR imaging using pseudo-continuous arterial-spin labeling and diffusion-weighted MR imaging in differentiating subtypes of parotid tumors[J]. Magn Reson Imaging, 2019, 63: 55-59. DOI: 10.1016/j.mri.2019.08.005.
Tatsuya Y, Hirohiko K, Kuniyoshi H, et al. Pseudo-continuous arterial spin labeling MR images in Warthin tumors and pleomorphic adenomas of the parotid gland: qualitative and quantitative analyses and their correlation with histopathologic and DWI and dynamic contrast enhanced MRI findings[J]. Neuroradiology, 2018, 60(8): 803-812. DOI: 10.1007/s00234-018-2046-9.
Lambin P, Leijenaar RT, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
Zhang LY, Fang MJ, Zang YL, et al. The development and application of radiomics[J]. Chin J Radiol, 2017, 51(1): 75-77. DOI: 10.3760/cma.j.issn.1005-1201.2017.01.017.
Nie K, Shi L, Chen Q, et al. Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI[J]. Clin Cancer Res, 2016, 22(21): 5256-5264. DOI: 10.1158/1078-0432.CCR-15-2997.
Piludu F, Marzi S, Ravanelli M, et al. MRI-Based Radiomics to Differentiate between Benign and Malignant Parotid Tumors With External Validation[J]. Front Oncol, 2021, 11: 656918. DOI: 10.3389/fonc.2021.656918.
Zheng YM, Li J, Liu S, et al. MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland[J]. Eur Radiol, 2021, 31(6): 4042-4052. DOI: 10.1007/s00330-020-07483-4.
Zheng YM, Chen J, Xu Q, et al. Development and validation of an MRI-based radiomics nomogram for distinguishing Warthin's tumour from pleomorphic adenomas of the parotid gland[J]. Dentomaxillofac Radiol, 2021: 20210023. DOI: 10.1259/dmfr.20210023.
Liu Y, Zheng J, Lu X, et al. Radiomics-based comparison of MRI and CT for differentiating pleomorphic adenomas and Warthin tumors of the parotid gland: a retrospective study[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2021, 131(5): 591-599. DOI: 10.1016/j.oooo.2021.01.014.
Sarioglu O, Sarioglu FC, Akdogan AI, et al. MRI-based texture analysis to differentiate the most common parotid tumours[J]. Clin Radiol, 2020, 75(11): 877.e15-877.e23. DOI: 10.1016/j.crad.2020.06.018.
Cosimo N, Maddalena T, Micheie P, et al. Texture analysis in the characterization of parotid salivary gland lesions: A study on MR diffusion weighted imaging[J]. Eur J Radiol, 2021, 136. DOI: 10.1016/j.ejrad.2021.109529.
Chen PX, Dong B, Zhang CY, et al. The histogram analysis of apparent diffusion coefficient in differential diagnosis of parotid tumor[J]. Dentomaxillofac Radiol, 2020, 49(5): 20190420. DOI: 10.1259/dmfr.20190420.

PREV Research progress of intelligent image prediction of MGMT methylation status in high-grade glioma
NEXT The application of cardiovascular magnetic resonance in prognosis evaluation and risk stratification in hypertrophic cardiomyopathy

Tel & Fax: +8610-67113815    E-mail: