Share this content in WeChat
Research progress of intelligent image prediction of MGMT methylation status in high-grade glioma
ZHAO Huimin  ZHANG Hui 

Cite this article as: Zhao HM, Zhang H. Research progress of intelligent image prediction of MGMT methylation status in high-grade glioma[J]. Chin J Magn Reson Imaging, 2022, 13(2): 130-132, 136. DOI:10.12015/issn.1674-8034.2022.02.032.

[Abstract] Glioma is the most common primary malignant tumors in the brain. which is highly heterogeneous. Even if the classification is the same, sometimes the prognosis is significantly different. Genotyping can better explain the biological behavior of the tumor.Amongthem,O6-methylguanine-DNA methyltransferase (MGMT) is closely related to the prognosis and treatment decisions of high-grade gliomas. It is an important DNA repair enzyme, which is not only associated with the development of glioma, but also with the sensitivity of alkylating agent chemotherapy and radiotherapy response. The methylation of the MGMT promoter will silence the transcriptional expression of MGMT, and is an important mechanism for the decrease of MGMT expression. In recent years, with the rapid advancement of science and technology, radiology has gradually developed towards the direction of artificial intelligence. The predictive performance of intelligent imaging on the methylation status of the MGMT promoter in high-grade gliomas was reviewed in this article.
[Keywords] high-grade glioma;O6-methylguanine methyltransferase;magnetic resonance imaging;intelligent imaging

ZHAO Huimin1   ZHANG Hui2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China

Zhang H, E-mail:

Conflicts of interest   None.

Received  2021-09-13
Accepted  2022-01-24
DOI: 10.12015/issn.1674-8034.2022.02.032
Cite this article as: Zhao HM, Zhang H. Research progress of intelligent image prediction of MGMT methylation status in high-grade glioma[J]. Chin J Magn Reson Imaging, 2022, 13(2): 130-132, 136.DOI:10.12015/issn.1674-8034.2022.02.032

Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352(10): 987-996. DOI: 10.1056/NEJMoa043330.
Weller M, van den Bent M, Preusser M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood[J]. Nat Rev Clin Oncol, 2021, 18(3): 170-186. DOI: 10.1038/s41571-020-00447-z.
Haque W, Thong E, Andrabi S, et al. Prognostic and predictive impact of MGMT promoter methylation in grade 3 gliomas[J]. J Clin Neurosci, 2021, 85: 115-121. DOI: 10.1016/j.jocn.2020.12.028.
Jian A, Jang K, Manuguerra M, et al. Machine learning for the prediction of molecular markers in glioma on magnetic resonance imaging: a systematic review and meta-analysis[J]. Neurosurgery, 2021, 89(1): 31-44. DOI: 10.1093/neuros/nyab103.
Yoon RG, Kim HS, Paik W, et al. Different diagnostic values of imaging parameters to predict pseudoprogression in glioblastoma subgroups stratified by MGMT promoter methylation[J]. Eur Radiol, 2017, 27(1): 255-266. DOI: 10.1007/s00330-016-4346-y.
Ge SN, Shi YW, Zhu G, et al. Molecular pathological markers correlated with the recurrence patterns of glioma[J]. Front Oncol, 2020, 10: 565045. DOI: 10.3389/fonc.2020.565045.
Fan ZW, Liu YK, Li SW, et al. Association of tumor growth rates with molecular biomarker status: a longitudinal study of high-grade glioma[J]. Aging (Albany NY), 2020, 12(9): 7908-7926. DOI: 10.18632/aging.103110.
Ni J, Wang PJ. Present and future: artificial intelligence in medical imaging[J]. Natl Med J China, 2021, 101(7): 455-457. DOI: 10.3760/cma.j.cn112137-20201213-03351.
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
Xi YB, Guo F, Xu ZL, et al. Radiomics signature: a potential biomarker for the prediction of MGMT promoter methylation in glioblastoma[J]. J Magn Reson Imaging, 2018, 47(5): 1380-1387. DOI: 10.1002/jmri.25860.
Huang WY, Wen LH, Wu G, et al. Comparison of radiomics analyses based on different magnetic resonance imaging sequences in grading and molecular genomic typing of glioma[J]. J Comput Assist Tomogr, 2021, 45(1): 110-120. DOI: 10.1097/RCT.0000000000001114.
Choi YS, Ahn SS, Kim DW, et al. Incremental prognostic value of ADC histogram analysis over MGMT promoter methylation status in patients with glioblastoma[J]. Radiology, 2016, 281(1): 175-184. DOI: 10.1148/radiol.2016151913.
Gihr G, Horvath-Rizea D, Hekeler E, et al. Diffusion weighted imaging in high-grade gliomas: a histogram-based analysis of apparent diffusion coefficient profile[J]. PLoS One, 2021, 16(4): e0249878. DOI: 10.1371/journal.pone.0249878.
Zhang HW, Lyu GW, He WJ, et al. DSC and DCE histogram analyses of glioma biomarkers, including IDH, MGMT, and TERT, on differentiation and survival[J]. Acad Radiol, 2020, 27(12): e263-e271. DOI: 10.1016/j.acra.2019.12.010.
Crisi G, Filice S. Predicting MGMT promoter methylation of glioblastoma from dynamic susceptibility contrast perfusion: a radiomic approach[J]. J Neuroimaging, 2020, 30(4): 458-462. DOI: 10.1111/jon.12724.
Jiang SS, Rui QH, Wang Y, et al. Discriminating MGMT promoter methylation status in patients with glioblastoma employing amide proton transfer-weighted MRI metrics[J]. Eur Radiol, 2018, 28(5): 2115-2123. DOI: 10.1007/s00330-017-5182-4.
Jiang CD, Kong ZR, Liu SR, et al. Fusion radiomics features from conventional MRI predict MGMT promoter methylation status in lower grade gliomas[J]. Eur J Radiol, 2019, 121: 108714. DOI: 10.1016/j.ejrad.2019.108714.
Li ZC, Bai HM, Sun QC, et al. Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study[J]. Eur Radiol, 2018, 28(9): 3640-3650. DOI: 10.1007/s00330-017-5302-1.
Huang WY, Wen LH, Wu G, et al. Radiological model based on the standard magnetic resonance sequences for detecting methylguanine methyltransferase methylation in glioma using texture analysis[J]. Cancer Sci, 2021, 112(7): 2835-2844. DOI: 10.1111/cas.14918.
Korfiatis P, Kline TL, Coufalova L, et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas[J]. Med Phys, 2016, 43(6): 2835-2844. DOI: 10.1118/1.4948668.
Wei JW, Yang GQ, Hao XH, et al. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication[J]. Eur Radiol, 2019, 29(2): 877-888. DOI: 10.1007/s00330-018-5575-z.
Kong ZR, Lin YS, Jiang CD, et al. 18F-FDG-PET-based Radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma[J]. Cancer Imaging, 2019, 19(1): 58. DOI: 10.1186/s40644-019-0246-0.
Qian J, Herman MG, Brinkmann DH, et al. Prediction of MGMT status for glioblastoma patients using radiomics feature extraction from 18F-DOPA-PET imaging[J]. Int J Radiat Oncol Biol Phys, 2020, 108(5): 1339-1346. DOI: 10.1016/j.ijrobp.2020.06.073.
Yu P, Ning J, Xu BX, et al. Histogram analysis of 11C-methionine integrated PET/MRI may facilitate to determine the O6-methylguanylmethyltransferase methylation status in gliomas[J]. Nucl Med Commun, 2019, 40(8): 850-856. DOI: 10.1097/MNM.0000000000001039.
Chen X, Zeng M, Tong YC, et al. Automatic prediction of MGMT status in glioblastoma via deep learning-based MR image analysis[J]. Biomed Res Int, 2020, 2020: 9258649. DOI: 10.1155/2020/9258649.
Han L, Kamdar MR. MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks[J]. Pac Symp Biocomput, 2018, 23: 331-342.
Chang P, Grinband J, Weinberg BD, et al. Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas[J]. AJNR Am J Neuroradiol, 2018, 39(7): 1201-1207. DOI: 10.3174/ajnr.A5667.
Yogananda CGB, Shah BR, Nalawade SS, et al. MRI-based deep-learning method for determining glioma MGMT promoter methylation status[J]. AJNR Am J Neuroradiol, 2021, 42(5): 845-852. DOI: 10.3174/ajnr.a7029.
Korfiatis P, Kline TL, Lachance DH, et al. Residual deep convolutional neural network predicts MGMT methylation status[J]. J Digit Imaging, 2017, 30(5): 622-628. DOI: 10.1007/s10278-017-0009-z.
Zou Y, Xia S. Advance of deep learning and radiomics in head and neck cancer imaging[J]. Chin J Radiol, 2020, 54(10): 1021-1024. DOI: 10.3760/cma.j.cn112149-20191022-00858.
Lao JW, Chen YS, Li ZC, et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme[J]. Sci Rep, 2017, 7(1): 10353. DOI: 10.1038/s41598-017-10649-8.
Zhu YB, Man CT, Gong LX, et al. A deep learning radiomics model for preoperative grading in meningioma[J]. Eur J Radiol, 2019, 116: 128-134. DOI: 10.1016/j.ejrad.2019.04.022.
Li ZJ, Wang YY, Yu JH, et al. Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma[J]. Sci Rep, 2017, 7(1): 5467. DOI: 10.1038/s41598-017-05848-2.
Zhang SM, Sun HQ, Su XR, et al. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O6-methylguanine-DNA methyltransferase promoter methylation in patients with gliomas[J]. J Magn Reson Imaging, 2021, 54(1): 197-205. DOI: 10.1002/jmri.27498.

PREV Principle of amide proton transfer imaging and its research progress in glioma
NEXT Research progress of MRI technology in the diagnosis of parotid tumor

Tel & Fax: +8610-67113815    E-mail: