Share this content in WeChat
New progress in imaging evaluation of intracranial atherosclerosis
ZHOU Hui  WANG Xiaochun 

Cite this article as: Zhou H, Wang XC. New progress in imaging evaluation of intracranial atherosclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(2): 123-126. DOI:10.12015/issn.1674-8034.2022.02.030.

[Abstract] Intracranial atherosclerosis is one of the main causes of ischemic stroke. Early diagnosis is of great significance to the later treatment and prognosis of patients. The traditional imaging evaluation methods are not enough to accurately evaluate this kind of disease. High resolution MR vessel wall imaging and the imaging omics of plaque have developed rapidly, showing its unique advantages. New methods such as intravascular imaging and computational fluid dynamics also play an important role in intracranial atherosclerosis, and the combined application of different evaluation methods will improve the accuracy of clinical diagnosis. The imaging evaluation methods of intracranial atherosclerosis were reviewed in this paper to clarify the main roles of different methods.
[Keywords] intracranial atherosclerosis transcranial;high resolution magnetic resonance vessel wall imaging;optical coherence tomography;computational fluid dynamics

ZHOU Hui1   WANG Xiaochun2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China

Wang XC, E-mail:

Conflicts of interest   None.

Received  2021-09-12
Accepted  2022-01-12
DOI: 10.12015/issn.1674-8034.2022.02.030
Cite this article as: Zhou H, Wang XC. New progress in imaging evaluation of intracranial atherosclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(2): 123-126.DOI:10.12015/issn.1674-8034.2022.02.030

Wong LK. Global burden of intracranial atherosclerosis[J]. Int J Stroke, 2006, 1(3): 158-159. DOI: 10.1111/j.1747-4949.2006.00045.x.
Mandell D, Mossa-Basha M, Qiao Y, et al. Intracranial Vessel Wall MRI: Principles and Expert Consensus Recommendations of the American Society of Neuroradiology[J]. AJNR Am J Neuroradiol, 2017, 38(2): 218-229. DOI: 10.3174/ajnr.A4893.
Cai Y, Liu X, Zhang L, et al. Prevalence and characteristics of atherosclerotic plaque: Left compared with right arteries and anterior compared with posterior circulation stroke[J]. Eur J Radiol, 2021, 142: 109862. DOI: 10.1016/j.ejrad.2021.109862.
Tian X, Tian B, Shi Z, et al. Assessment of Intracranial Atherosclerotic Plaques Using 3D Black-Blood MRI: Comparison With 3D Time-of-Flight MRA and DSA[J]. J Magn Reson Imaging, 2021, 53(2): 469-478. DOI: 10.1002/jmri.27341.
Caliandro P, Reale G, Demchuk AM, et al. Symptomatic intracranial atherosclerotic disease: an ultrasound 2-year follow-up pilot study[J]. Neurol Sci, 2018, 39(11): 1955-1959. DOI: 10.1007/s10072-018-3484-1.
Barnard ZR, Alexander MJ. Update in the treatment of intracranial atherosclerotic disease[J]. Stroke Vasc Neurol, 2020, 5(1): 59-64 DOI: 10.1136/svn-2019-000279.
Tang Y, Wang M, Wu T, et al. The role of carotid stenosis ultrasound scale in the prediction of ischemic stroke[J]. Neurol Sci, 2020, 41(5): 1193-1199. DOI: 10.1007/s10072-019-04204-8.
Assarzadegan F, Mohammadi F, Safarpour LB, et al. Evaluation of neurosonology versus digital subtraction angiography in acute stroke patients[J]. J Clin Neurosci, 2021, 91: 378-382. DOI: 10.1016/j.jocn.2021.07.030.
Connolly F, Rohl J E, Lopezprieto J, et al. Pattern of Activated Pathways and Quality of Collateral Status in Patients with Symptomatic Internal Carotid Artery Occlusion[J]. Cerebrovasc Dis, 2019, 48(3-6): 244-250. DOI: 10.1159/000504663.
Sebök M, Niftrik CHBV, Lohaus N, et al. Leptomeningeal collateral activation indicates severely impaired cerebrovascular reserve capacity in patients with symptomatic unilateral carotid artery occlusion[J]. J Cereb Blood Flow Metab, 2021, 41(11): 3039-3051. DOI: 10.1177/0271678X211024373.
Ramanathan R, Dey D, Nørgaard BL, et al. Carotid plaque composition by CT angiography in asymptomatic subjects: a head-to-head comparison to ultrasound[J]. Eur Radiol, 2019, 29(11): 5920-5931. DOI: 10.1007/s00330-019-06086-y.
Sarikaya B, Colip C, Hwang WD, et al. Comparison of Time-of-Flight MR angiography and intracranial vessel wall MRI for luminal measurements relative to CT angiography[J]. Br J Radiol, 2020, 94(1118): 20200743. DOI: 10.1259/bjr.20200743.
Lee SJ, Liu B, Rane N, et al. Correlation between CT angiography and digital subtraction angiography in acute ischemic strokes[J]. Clin Neurol Neurosurg, 2021, 200: 106399. DOI: 10.1016/j.clineuro.2020.106399.
Brinjikji W, Huston J, Rabinstein A, et al. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability[J]. J Neurosurg, 2016, 124(1): 27-42. DOI: 10.3171/2015.1.JNS142452.
Ma GM, Yu Y, Duan HF, et al. Subtraction CT angiography in head and neck with low radiation and contrast dose dual-energy spectral CT using rapid kV-switching technique[J]. Br J Radiol, 2018, 91(1086): 20170631. DOI: 10.1259/bjr.20170631.
Valaikiene J, Ryliskyte L, Valaika A, et al. A High Prevalence of Intracranial Stenosis in Patients with Coronary Artery Disease and the Diagnostic Value of Transcranial Duplex Sonography[J]. J Stroke Cerebrovasc Dis, 2019, 28(4): 1015-1021. DOI: 10.1016/j.jstrokecerebrovasdis.2018.12.023.
Dong KK, Jared TV, Tina MG, et al. Comparison of non-contrast vessel wall imaging and 3-D time-of-flight MRA for atherosclerotic stenosis and plaque characterization within intracranial arteries[J]. J Neuroradiol, 2020, 47(4): 266-271. DOI: 10.1016/j.neurad.2019.05.003.
Ogata A, Wakamiya T, Nishihara M, et al. Association between Pericytes in Intraplaque Neovessels and Magnetic Resonance Angiography Findings[J]. Int J Mol Sci, 2020, 21(6): 1980. DOI: 10.3390/ijms21061980.
Yamada K, Kawasaki M,Yoshimura S, et al. High-Intensity Signal in Carotid Plaque on Routine 3D-TOF-MRA Is a Risk Factor of Ischemic Stroke[J]. Cerebrovasc Dis, 2016, 41(1-2): 13-18. DOI: 10.1159/000441094.
Wang Z, Lu M, Liu W, et al. Assessment of carotid atherosclerotic disease using three-dimensional cardiovascular magnetic resonance vessel wall imaging: comparison with digital subtraction angiography[J]. J Cardiovasc Magn Reson, 2020, 22(1): 18. DOI: 10.1186/s12968-020-0604-x.
Shao Q, Li Q, Wu Q, et al. Comparison of 3D T1-SPACE and DSA in evaluation of intracranial in-stent restenosis[J]. Br J Radiol, 2021, 94(1118): 20190950. DOI: 10.1259/bjr.20190950.
Jie S, Mohan K, Tao J, et al. Complications associated with diagnostic cerebral angiography: A retrospective analysis of 644 consecutive cerebral angiographic cases[J]. Neurol India, 2018, 66(4): 1154-1158. DOI: 10.1148/radiol.2433060536.
Yu JF, Pung L, Minami H, et al. Virtual 2D angiography from four-dimensional digital subtraction angiography (4D-DSA): A feasibility study[J]. Interv Neuroradiol, 2021, 27(2): 307-312. DOI: 10.1177/1591019920961604.
Wang HR, Gao Y, Wu Q. The research progress of high-resolution magnetic resonance vessel wall imaging in intracranial atherosclerotic plaques[J]. Chin J Magn Reson Imaging, 2021, 12(9): 95-97, 102. DOI: 10.12015/issn.1674-8034.2021.09.024.
Song JW, Pavlou A, Xiao JY, et al. Vessel Wall Magnetic Resonance Imaging Biomarkers of Symptomatic Intracranial Atherosclerosis: A Meta-Analysis[J]. Stroke, 2021, 52(1): 193-202. DOI: 10.1161/STROKEAHA.120.031480.
Kim HJ, Choi EH, Chung JW, et al. Luminal and Wall Changes in Intracranial Arterial Lesions for Predicting Stroke Occurrence[J]. Stroke, 2020, 51(8): 2495-2504. DOI: 10.1161/STROKEAHA.120.030012.
Sun B, Wang L, Li X, et al. Intracranial Atherosclerotic Plaque Characteristics and Burden Associated With Recurrent Acute Stroke: A 3D Quantitative Vessel Wall MRI Study[J]. Front Aging Neurosc, 2021, 13: 706544. DOI: 10.3389/fnagi.2021.706544.
Gong Y, Cao C, Guo Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA[J]. Eur Radiol, 2021, 31(8): 5479-5489. DOI: 10.1007/s00330-021-07719-x.
Hou Z, Yan L, Zhang Z, et al. High-resolution magnetic resonance vessel wall imaging-guided endovascular recanalization for nonacute intracranial artery occlusion[J]. J Neurosurg, 2021: 1-7. DOI: 10.3171/2021.9.JNS211770.
Shi Z, Zhu C, Dengan A, et al. Identification of high-risk plaque features in intracranial atherosclerosis: initial experience using a radiomic approach[J]. Eur Radiol, 2018, 28(9): 3912-3921. DOI: 10.1007/s00330-018-5395-1.
Fu B, Shi Z, Tian B, et al. Identification of culprit plaques characteristics of intracranial atherosclerosis: a radiomic study[J]. International Journal of Cerebrovascular Disease, 2019, 27(4): 252-259. DOI: 10.3760/cma.j.issn.1673-4165.2019.04.003.
Shimamura K, Kubo T, Akasaka T. Evaluation of coronary plaques and atherosclerosis using optical coherence tomography[J]. Expert Rev Cardiovasc Ther, 2021, 19(5): 375-386. DOI: 10.1080/14779072.2021.1914588.
Xu XH, Li M, Liu R, et al.Optical coherence tomography evaluation of vertebrobasilar artery stenosis: case series and literature review[J]. J Neurointerv Surg, 2020, 12(8): 809-813. DOI: 10.1136/neurintsurg-2019-015660.
Pavlin-Premrl D, Sharma R, Campbell BCV, et al. Advanced Imaging of Intracranial Atherosclerosis: Lessons from Interventional Cardiology[J]. Front Neurol, 2017, 8: 387. DOI: 10.3389/fneur.2017.00387.
Anagnostakou V, Ughi GJ, Puri AS, et al. Optical Coherence Tomography for Neurovascular Disorders[J]. Neuroscience, 2021, 474: 134-144. DOI: 10.1016/j.neuroscience.2021.06.008.
Gao P, Gui LQ, Yang B, et al. Optical Coherence Tomography of Spontaneous Basilar Artery Dissection in a Patient With Acute Ischemic Stroke[J]. Front Neurol, 2018, 9: 858. DOI: 10.3389/fneur.2018.00858.
Shinjo S, Kiyoshi H, Hiroyuki O, et al. Current clinical use of intravascular ultrasound imaging to guide percutaneous coronary interventions[J]. Cardiovasc Interv Ther, 2020, 35(1): 30-36. DOI: 10.1007/s12928-019-00603-y.
Weigand S, Saalfeld S, Hoffmann T, et al. Suitability of intravascular imaging for assessment of cerebrovascular diseases[J]. Neuroradiology, 2019, 61(9): 1093-1101. DOI: 10.1007/s00234-019-02233-w.
Hussain AS, Hussain NS. Intravascular Ultrasound for Intracranial and Extracranial Carotid Artery Stent Placement[J]. Cureus, 2016, 8(8): e732. DOI: 10.7759/cureus.732.
Zhang Y, Pang S, Chen X, et al. Comparison of intravascular ultrasound guided versus angiography guided drug eluting stent implantation: a systematic review and meta-analysis[J]. BMC Cardiovasc Disord, 2015, 15: 153. DOI: 10.1186/s12872-015-0144-8.
Pavlin-premrl D, Boopathy S, Nemes A, et al. Computational Fluid Dynamics in Intracranial Atherosclerosis - Lessons from Cardiology: A Review of CFD in Intracranial Atherosclerosis[J]. J Stroke Cerebrovasc Dis, 2021, 30(10): 106009. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106009.
Tang D, Teng Z, Canton G, et al. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study[J]. Stroke, 2009, 40(10): 3258-3263. DOI: 10.1161/STROKEAHA.109.558676.
Leng X, Lan L, Ip H, et al. Hemodynamics and stroke risk in intracranial atherosclerotic disease[J]. Ann Neurol, 2019, 85(5): 752-764. DOI: 10.1002/ana.25456.
Lan L, Liu H, Ip V, et al. Regional High Wall Shear Stress Associated With Stenosis Regression in Symptomatic Intracranial Atherosclerotic Disease[J]. Stroke, 2020, 51(10): 3064-3073. DOI: 10.1161/STROKEAHA.120.030615.
Fakih R, Roa J, Batlha G, et al. Detection and Quantification of Symptomatic Atherosclerotic Plaques With High-Resolution Imaging in Cryptogenic Stroke[J]. Stroke, 2020, 51(12): 3623-3631. DOI: 10.1161/STROKEAHA.120.031167.

PREV Research progress in brain functional changes in PTSD patients
NEXT Principle of amide proton transfer imaging and its research progress in glioma

Tel & Fax: +8610-67113815    E-mail: